摘要
借助于未知函数的变换 ,一类非线性非可积波动方程化为易于求解的一个三线性齐次方程 ,从而得到了此类方程的精确扭状孤立波解 ,奇异行波解及周期的三角函数波解 .作为特例 ,Burgers方程 ,Burgers-Huxley方程 ,Chaffee-Infante反应扩散方程 ,Newell-Whitehead方程 ,Fitz Hugh-Nagumo方程的解均可用此法求得 .
with the aid of transformation of an unknown function,a class of nonlinear nonintegrable wave equation are reduced to the trilinear homogeneous equation which can be easily solved, therefore the exact kink shape solitary wave solutions,singular travelling wave solutions,and the periodic triangle function wave solutions are obtained.As special cases,Burgers equation,Burgers Huxley equation, Chaffee Infante reaction diffusion equation,Newell Whitehead equation, FitzHugh Nagumo equation,and an isothermal autocatalytic system equation can also be solved by this method.
出处
《纺织高校基础科学学报》
CAS
2000年第2期100-106,共7页
Basic Sciences Journal of Textile Universities
基金
国家自然科学基金资助项目!( 1 9971 0 68)
西安石油学院科研基金项目!( 99- 0 1 9)
关键词
非线性波动方程
未知函数
变换
精确解
nonlinear wave equations
transformations of an unknown function
exact solutions