期刊文献+

一类非线性波动方程的显式精确解

Explicit and exact solutions for a class of nonlinear wave equation
下载PDF
导出
摘要 借助于未知函数的变换 ,一类非线性非可积波动方程化为易于求解的一个三线性齐次方程 ,从而得到了此类方程的精确扭状孤立波解 ,奇异行波解及周期的三角函数波解 .作为特例 ,Burgers方程 ,Burgers-Huxley方程 ,Chaffee-Infante反应扩散方程 ,Newell-Whitehead方程 ,Fitz Hugh-Nagumo方程的解均可用此法求得 . with the aid of transformation of an unknown function,a class of nonlinear nonintegrable wave equation are reduced to the trilinear homogeneous equation which can be easily solved, therefore the exact kink shape solitary wave solutions,singular travelling wave solutions,and the periodic triangle function wave solutions are obtained.As special cases,Burgers equation,Burgers Huxley equation, Chaffee Infante reaction diffusion equation,Newell Whitehead equation, FitzHugh Nagumo equation,and an isothermal autocatalytic system equation can also be solved by this method.
作者 尚亚东
出处 《纺织高校基础科学学报》 CAS 2000年第2期100-106,共7页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金资助项目!( 1 9971 0 68) 西安石油学院科研基金项目!( 99- 0 1 9)
关键词 非线性波动方程 未知函数 变换 精确解 nonlinear wave equations transformations of an unknown function exact solutions
  • 相关文献

参考文献9

  • 1GRAMMATICOS R,RAMANI A,HIETARINTA J. A search for integrable bilinear equations; The Painleve approach[J].J Math Phys,1990,31(ll):2572~2578.
  • 2WHITHAM G B. On shocks and solitary waves[J]. Scripps Institution of Oceanography Reference Series,1991:24.
  • 3BERLOFF N G, HOWARD L N. Solitary and periodic solutions of nonlinear nonintegrable equations[J]. Studies in Appl Math,1997,99(1):1~24.
  • 4MA W X,FUCHSSTEINER B. Explicit and exact xolutions to a Kolmogorov-Petrovskii-Piskunov equation[J]. Int J Non-linear Mechanics,1996,31(3):329~338.
  • 5HERMAN W. Application of a Macsyma program for the Painleve test to the FitzHogh-Nagumo equation[J]. In: CONTE R,BOCCARA N Eds. Partially Integrable Evolution Equations in Physics. Kuwer:Dordrecht,1990.585~586.
  • 6ESTEVEZ P G,GORDOA P R. Nonclassical symmetries and the singular manifold method:Theory and six example[J]. Studies in Appl Math,1995,95(1):73~114.
  • 7王明亮,周宇斌.Chafee-Infante反应扩散方程的精确解[J].兰州大学学报(自然科学版),1996,32(3):26-30. 被引量:20
  • 8NEWELL A C, WHITEHEAD J A. Finite bandwidth,finite amplitude conviction[J]. J Fluid Mech,1969,38:279~303.
  • 9NDAYIRINDE I,MALFLIET W. Exact solutions of an isothermal autocatalytic system[J]. J Phys Soc Japan,1996,65(5):1510.

二级参考文献1

  • 1王明亮,Phys Lett A,1995年,199卷,169页

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部