期刊文献+

Polymer-coated symmetrical metal-cladding waveguide for chemical vapor detection with high sensitivity 被引量:1

Polymer-coated symmetrical metal-cladding waveguide for chemical vapor detection with high sensitivity
原文传递
导出
摘要 An optical platform for sensitive detection of chemical vapor based on a polymer-coated symmetrical metal-cladding waveguide is proposed.The diffusion of chemical vapor usually leads to a combinational effect in the polymer layer,i.e.,swelling and refractive index change.Owing to the high sensitivity of ultrahigh-order modes,the vapor-induced effect will give rise to a dramatic variation of the reflected light intensity.For proof-of-concept,a good linearity and a low detection limit of toluene and benzene are experimentally demonstrated with an amorphous Teflon AF polymer layer. An optical platform for sensitive detection of chemical vapor based on a polymer-coated symmetrical metal-cladding waveguide is proposed. The diffusion of chemical vapor usually leads to a combinational effect in the polymer layer, i.e., swelling and refractive index change. Owing to the high sensitivity of ultrahigh-order modes, the vapor-induced effect will give rise to a dramatic variation of the reflected light intensity. For proof-of-concept, a good linearity and a low detection limit of toluene and benzene are experimentally demonstrated with an amorphous Teflon AF polymer layer.
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第11期2024-2029,共6页 中国科学:物理学、力学、天文学(英文版)
基金 supported by the National Natural Science Foundation of China (Grant No. 61168002) the Opening Foundation of the State Key Laboratory of Advanced Optical Communication Systems and Networks(Grant No. 2011GZKF031105)
关键词 金属包层 高灵敏度 聚合物 检测限 汽相 化学 波导 对称 chemical vapor detection polymer layer symmetrical metal-cladding waveguide ultrahigh-order mode
  • 相关文献

参考文献29

  • 1Stetter J R, Li J. Amperometric gas sensors—a review. Chem Rev,2008, 108: 352-366.
  • 2Stievater T H, Rabinovich W S, Ferraro M S, et al. Photonic microharp chemical sensors. Opt Express, 2008, 16: 2423-2430.
  • 3Mah C, Thurbide K B. Acoustic methods of detection in gas chromatography. J Separ Sci, 2006, 29: 1922-1930.
  • 4Forleo A, Francioso L, Capone S, et al. Synthesis and gas sensing properties of ZnO quantum dots. Sens Actuators B Chem, 2010,146(1): 111-115.
  • 5Wei Q, Luo W D, Liao B, et al. Giant capacitance effect and physical model of nano crystalline Cuo-BaTiO3 semiconductor as a CO2 gas sensor. J Appl Phys, 2000, 88(8): 4818-4824.
  • 6Collins P G, Bradley K, Ishigami M, et al. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science, 2000, 287:1801-1804.
  • 7Nylander C, Liedberg B, Lind T. Gas detection by means of surface plasmon resonance. Sens Actuators, 1982, 3: 79-88.
  • 8Notcovich A G, Zhuk V, Lipson S G. Surface plasmon resonance phase imaging. Appl Phys Lett, 2000, 76(13): 1665-1667.
  • 9Kabashin A V, Pstskovsky, Grigorenko A N. Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing. Opt Express, 2009, 17(23): 21191-21204.
  • 10Warken F, Vetsch E, Meschede D, et al. Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fiber. Opt Express, 2007, 15: 11952-11958.

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部