期刊文献+

Theoretical investigation on tunneling magnetoresistance in ferromagnetic/anti-ferromagnetic core/shell system

Theoretical investigation on tunneling magnetoresistance in ferromagnetic/anti-ferromagnetic core/shell system
原文传递
导出
摘要 Based on Monte Carlo simulations,the effect of structural configuration on the hysteresis behavior and tunneling magnetoresistance(TMR) of composite nanoparticles with ferromagnetic(FM) core/anti-ferromagnetic(AFM) shell is investigated.The simulated results indicate that the coercive field(H c) of composites increases with the decreasing ratio of core-radius(r core) to shell-radius(r shell).When the ratio of r shell to r core is approaching 4:3,H c decreases with increasing AFM thickness.In addition,TMR is found to increase with the decreasing ratio of r core to r shell,resulting from the enhancement of resistance changes in disordered AFM shell. Based on Monte Carlo simulations, the effect of structural configuration on the hysteresis behavior and tunneling magnetoresistance (TMR) of composite nanoparticles with ferromagnetic (FM) core/anti-ferromagnetic (AFM) shell is investigated. The simulated results indicate that the coercive field (Hc) of composites increases with the decreasing ratio of core-radius (rcore) to shell-radius (rshell). When the ratio of rshell to rcore is approaching 4:3, Hc decreases with increasing AFM thickness. In addition, TMR is found to increase with the decreasing ratio of rcore to rshell, resulting from the enhancement of resistance changes in disordered AFM shell.
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第11期2038-2041,共4页 中国科学:物理学、力学、天文学(英文版)
基金 supported by the National Natural Science Foundation of China (Grant No. 11074039) the National Key Project for Basic Research of China (Grant No. 2011CBA00200)
关键词 tunneling magnetoresistance nano-particle arrays Coulomb blockade effect spin-dependent scattering Monte Carlosimulation 隧道磁电阻效应 反铁磁 蒙特卡罗模拟 系统 复合纳米粒子 AFM 隧道磁阻 复合材料
  • 相关文献

参考文献16

  • 1Moodera J S, Kinder L R, Wong T M, et al. Conduction threshold, switching, and hysteresis in quantum dot arrays. Phys Rev Lett, 1995,74: 3273-3276.
  • 2Ney A, Pampuch C, Koch R, et al. Ploog, programmable computing with a single magnetoresistive element. Nature, 2003, 425: 485-487.
  • 3Simonds J L. Magnetoelectronics today and tomorrow. Phys Today,1995, 48: 26-32.
  • 4Sakuraba Y, Hattori M, Oogane M, et al. Giant tunneling magnetoresistance in Co2MnSi/Al-O/Co2MnSi magnetic tunnel junctions. Appl Phys Lett, 2006, 88: 192508.
  • 5Chen P, Xing D Y, Du Y W, et al. Giant room-temperature magnetoresistance in polycrystalline Zn0.41Fe2.59O4 with α-Fe2O3 grain boundaries. Phys Rev Lett, 2001, 87: 107202.
  • 6Parkin S S P, Kaiser C, Panchula A, et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat Mater, 2004, 3: 862-867.
  • 7Yuasa S J, Nagahama T, Fukushima A, et al. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat Mater, 2004, 3: 868-871.
  • 8Inoue J, Maekawa S. Theory of tunneling magnetoresistance in granular magnetic films. Phys Rev B, 1996, 53: R11927-R11929.
  • 9Ju S, Cai T Y, Guo G Y, et al. Theory of tunneling magnetoresistance and tunneling electroresistance in Co/BiFeO3/La2/3Sr1/3MnO3 junctions. J Appl Phys, 2008, 104: 053904.
  • 10Huang Z G, Chen Z G, Peng K, et al. Monte Carlo simulation of tunneling magnetoresistance in nanostructured materials. Phys Rev B,2004, 69: 094420-094427.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部