期刊文献+

薄板弯曲大变形高阶非线性偏微分方程推导与优化算法研究 被引量:10

Study on derivation and optimization algorithm about thin plate bending large deformation higher-order nonlinear partial differential equations
原文传递
导出
摘要 针对薄板弯曲大变形问题,运用变分原理,建立了薄板弯曲大变形问题的高阶非线性偏微分方程.运用有限差分法和动态设计变量优化算法原理,以离散坐标点的上未知挠度为设计变量,以离散坐标点的差分方程组构建目标函数,提出了薄板弯曲大变形挠度求解的动态设计变量优化算法,编制了相应的优化求解程序.分析了具有固定边界、均布载荷下的矩形薄板挠度的典型算例.通过与有限元的结果对比,表明了本文求解算法的有效性和精确性,提供了直接求解实际工程问题的基础. For a thin plate bending large deformation problem, variational principle is applied, and higher-order nonlinear partial differential equations about thin plate bending large deformation is established. Based on difference method and dynamic design variable optimiza- tion method, making unknown deflection of discrete coordinate points as design variables, differential equations sets of the discrete coordinates points as building objective function, a dynamic design variable optimization algorithm for computing thin plate bending deflection is proposed. Universal computing program is designed. Practical example about rectangular thin plate with fixed boundary under uniform load is analyzed. Comparing the program computing result with finite element solution. Effectiveness and feasibility of the method are verified. This method can be used to solve engineering problem.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第18期9-18,共10页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10972144) 辽宁省自然科学基金(批准号:201102181) 辽宁省教育厅科学研究项目(批准号:L2010445)资助的课题~~
关键词 高阶非线性偏微分方程 薄板弯曲大变形 动态设计变量优化算法 程序设计 higher-order nonlinear partial differential equations, thin plate-bending large deformation, dynamicdesign variables optimization method, program design
  • 相关文献

参考文献18

  • 1Timoshenk S, Woinowsky-Krieger S 1959 Theory of Plates and Shells (Now York: McGraw-Hill).
  • 2Alzheimer W E, Davis R T 1968 J. Eng. Mech. Div. Proc. ASCE 4 905.
  • 3Xu Z L 2006 Elasticity (4th Ed.) (Beijing: Higher Education Press) pp149-150.
  • 4Huang Z Y 1957 Acta Phys. Sin. 13 312.
  • 5Qian w C, Ye K Y 1954 Acta Phys. Sin. 10 209.
  • 6Hu H C 1955 Acta Phys. Sin. 11 19.
  • 7Xie Y X, Tang J S 2004 Acta Phys. Sin. 53 2828.
  • 8Ma W X, Gu X, Gao L 2009 Adv. Appl. Math. Mech. 1 573.
  • 9Yang B, Ding H J, Chen W Q 2008 Appl. Math. Mech. 29 9994.
  • 10Huang J J 2009 Chin. Phys. 18 B 3616.

同被引文献71

引证文献10

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部