期刊文献+

采用Al/TaN叠层电极提高Si基Ge PIN光电探测器的性能 被引量:4

Improvement on performance of Si-based Ge PIN photodetector with Al/TaN electrode for n-type Ge contact
原文传递
导出
摘要 金属与Ge材料接触由于存在强烈的费米钉扎效应,导致金属电极与n型Ge接触引入较大的接触电阻,限制了Si基Ge探测器响应带宽.本文报道了在SOI衬底上外延Ge单晶薄膜并制备了不同台面尺度的Ge PIN光电探测器.对比了电极分别为金属Al和Al/TaN叠层的具有相同器件结构的SOI基Ge PIN光电探测器的暗电流、响应度以及响应带宽等参数.发现在Al与Ge之间增加一薄层TaN可有效减小n型Ge的接触电阻,将台面直径为24μm的探测器在1.55μm的波长和-1 V偏压下的3 dB响应带宽提高了4倍.同时,器件暗电流减小一个数量级,而响应度提高了2倍.结果表明,采用TaN薄层制作金属与Ge接触电极,可有效钝化金属与Ge界面,减轻费米钉扎效应,降低金属与n-Ge接触的势垒高度,因而减小接触电阻和界面复合电流,提高探测器的光电性能. Large contact resistance due to Fermi level pinning effect at the interface between metal and Ge strongly restricts the 3 dB bandwidth of Ge photodetectors. In this paper, the Ge PIN photodetectors fabricated on silicon-on-insulator substrates, respectively, with A1 and AI/TaN electrodes are comparatively studied. It is found that 3 dB bandwidth of photodetector with 24 g.m mesa diameter using an A1/TaN stack electrode is improved by four times more than that of the same structure Ge PIN photodetector using an A1 electrode under -1 V bias at 1.55 ~tm. In addition, the dark current is reduced by one order of magnitude, and optical responsivity is enhanced by two times. These results suggest that a thin metallic TaN layer as an electrode can effectively passivate the Ge surface and alleviate the Fermi-level pinning effect, thus reducing the contact resistance and the recombination current at the interface. TaN can be considered as a promising electrode material for Ge device applications.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第18期355-360,共6页 Acta Physica Sinica
基金 国家重点基础研究发展计划(批准号:2012CB933503) 国家自然科学基金(批准号:61036003 61176092) 中央高校基本科研业务费(批准号:2010121056) 教育部博士项目基金(批准号:201101211 10025)资助的课题~~
关键词 Al/TaN 接触电阻 Ge PIN光电探测器 高频特性 A1/TaN, contact resistance, Ge PIN photodetector, high frequency
  • 相关文献

参考文献12

  • 1Michel J, Liu J F, Kimerling L C 2010Nature Photonics 4 527.
  • 2Dimoulas A, Tsipas P, Sotiropoulos A, Evangelou E K 2006 Appl. Phys. Lett. 89 252110.
  • 3Chao Y L, Woo J C S 2010 IEEE Trans. Electron. Devices 57 665.
  • 4Zhou Y, Ogawa M, Han X H, Wang K L 2008 Appl. Phys. Lett. 93 202105.
  • 5Kobayashi M, Kinoshita A, Saraswat K, Wong H S P, Nishi Y 2008 Dig. Tech. Pap.-Symp. VLSL Technol. 54.
  • 6Nishimura T, Kita K, Toriumi A 2008 Appl. Phys. Express 1 051406.
  • 7Jason Lin J Y, Roy A M, Nainani A, Sun Y, Saraswat K C 2011 Appl. Phys. Lett. 98 092113.
  • 8Roy A M, Jason Lin J Y, Saraswat K C 2010 IEEE Electron Device Lett. 31 10.
  • 9lyota M, Yamamoto K, Wang D, Yang H G, Nakashima H 20li Appl. Phys. Lett. 98 192108.
  • 10Wu Z, Huang W, Li C, Lai H K, Chen S Y 2012 IEEE Trans. Electron. Devices 59 1328.

同被引文献9

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部