期刊文献+

铁磁/反铁磁双层膜系统中的磁畴动力学行为 被引量:3

Dynamic behaviors of domain wall in FM/AFM bilayers
原文传递
导出
摘要 比较了铁磁单层膜与铁磁/反铁磁双层膜结构中的磁畴演化行为,发现由于反铁磁层膜对铁磁层膜的耦合作用使得系统的磁畴壁厚度、磁畴壁等效质量、磁畴壁移动速度等发生了改变,系统的矫顽场增强,并出现了交换偏置场.文章具体研究了反铁磁层耦合作用下其磁畴壁厚度、等效质量以及磁畴壁移动速度等与反铁磁层的净磁化、磁各向异性、界面耦合强度以及温度等的关系;并研究了其对铁磁/反铁磁双层膜中的交换偏置场、矫顽场的影响.进而从磁畴结构的形成及其演化上揭示了铁磁/反铁磁双层膜中出现交换偏置以及矫顽场增加的物理机制. The magnetic domain evolution behaviors of ferromagnetic (FM) monolayer and ferromagnetic (FM)/antiferromagnetic (AFM) bilayer are compared and analyzed. The results indicate that the equivalent width, mass and velocity of magnetic domain wall are changed, then the coercivity is enhanced and the exchange bias is present due to the exchange coupling between anti- ferromagnetic and ferromagnetic layer. The results also show that the equivalent width, mass and velocity of magnetic domain wall for FM/AFM bilayers system could be varied with the change of the net magnetization of antiferromagnetic layer, the magnetic anisotropy constants of FM and AFM layer, the exchange coupling constant of antiferromagnetic layer, interface exchange coupling constant and the temperature, and the relevant influences on the coercivity and exchange bias are discussed. So, the physical mechanisms of the emergence of exchange bias and enhancement of coercivity are discovered by the formation and evolution of the domain wall.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第18期501-506,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10974170) 国家自然科学青年基金(批准号:11104239 11104240)资助的课题~~
关键词 铁磁/反铁磁双层膜 磁畴壁运动 矫顽场 交换偏置场 FM/AFM bilayers, magnetic domain-wall motion, coercivity, exchange bias field
  • 相关文献

参考文献22

  • 1Noges J, Schuller I K 1999 Magn. Magn. Mater. 192 203.
  • 2Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413.
  • 3Meiklejohn W H, Bean C P 1957 Phys. Rev. 105 904.
  • 4Stamps R L 2000 J. Phys. D: Appl. Phys. 33 247.
  • 5Nowak U, Usadel K D, Keller J, Miltenyi P, Beschoten B, Gun- therodt G 2002 Phys. Rev. B 66 014430.
  • 6Wu X W, Chien C L 1998 Phys. Rev. Lett. 81 2795.
  • 7Eftaxias E, Trohidou K N 2005 Phys. Rev. B 71 134406.
  • 8Miltenyi P, Gierlings M, Keller J, Beschoten B, Guntherodt G, Norwak U. Usadel K D 2000 Phys. Rev. Lett. 84 4224.
  • 9Bae S, Judy J H, Egelhoff W F 2000 J. Appl. Phys. 87 6650.
  • 10Jungblut R, Coehoom R, Johnson M T, Sauer C, van der Zaag P J, Ball A R 1995 Maen. Maen. Mater 148 300.

同被引文献25

  • 1赵爽,吴福全.石英晶体的色散方程及折射率温度系数[J].光子学报,2006,35(8):1183-1186. 被引量:23
  • 2新谷隆一,范爱英,康昌鹤.偏振光[M].北京:原子能出版社,1994.33-117.
  • 3刘延冰,李红斌,余春雨,等.电子式互感器[M].北京:科学出版社,2009.111-98.
  • 4Arikawa Takashi, Wang Xiangfeng, Belyanin Alexey A, et al. Giant tunable Faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics[J]. Opt Express, 2012, 20(17): 19484-19492.
  • 5Lin Chunen, Yu Chihjen, Li Yingchang, et al. High sensitivity two-frequency paired polarized interferometer in Faraday rotation angle measurement of ambient air with single-traveling eonfiguration[J]. J Appl Phys, 2008, 104(3): 033101.
  • 6Chong Chen, Ni Yi, Shengming Zhou, et al. Preparation of (Tb0. 8Y0. 2)3A15012 transparent ceramic as novel magneto- optical isolator material[J]. Chin Opt Lett, 2013, 11 (2): 021601.
  • 7Sascha Liehr. Optical Measurement of Currents in Power Converters [ D]. Stockholm: Royal Institute of Technology, 2006. 12-44.
  • 8J Scott Tyo, Dennis L Goldstein, Darid B Chenault, et al. Review of passive imaging polarimetry for remote sensing applications[J]. ApplOpt, 2006, 45(22): 5453-5469.
  • 9Hamamoto T, Toyota H, Hihuta H. Micro-retarder array for imaging polarimetry in the visible wavelength region[C]. SPIE, 2001, 4440: 293-300.
  • 10Kazuhiko Oka, Toshiaki Kaneko. Compact complete imaging polarimeter using birefringent wedge prisms[J]. Opt Express, 2003, 11(13): 1510-1519.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部