期刊文献+

具有限时滞Van der pol方程Hopf分支的数值逼近

Hopf Bifurcation in Numerical Approximation for Van der pol Equation with Finite Delay
下载PDF
导出
摘要 研究了欧拉方法对以滞量为参数的具有Hopf分支的Van der pol方程的数值逼近问题。首先,利用欧拉方法将得到的时滞差分方程表示为映射,然后以滞量为分支参数,利用离散动力系统的分支理论,在Van der pol方程具有Hopf分支的条件下,给出了差分方程Hopf分支存在的条件及连续系统与其数值逼近间的关系,证明了当该系统在r=r0产生Hopf分支时,其数值逼近也在相应的参数rh处具有Hopf分支,并且rh=r0+o(h). The numerical approximation of Van der pol equation is considerd using delay as parameter.the Delay deference equation obtained by using Euler method is written as a map.Accoding to the theories of bifurcation for discrete dynamical systems,the conditions to guarantee the existence of Hopf bifurcation for numerical approximation are given.The relations of Hopf bifurcation between the continuous and the discrete are discussed.That when the Van der pol equation has Hopf bifurcations at r=r0,the numerical approximation also has Hopf bifurcations at rh=r0+o(h) is proved.
出处 《长春理工大学学报(自然科学版)》 2012年第3期106-108,共3页 Journal of Changchun University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金(10726062)
关键词 VAN der POL方程 欧拉方法 HOPF分支 数值逼近 Van der pol equation Euler method Hopf bifurcation numerical approximation.
  • 相关文献

参考文献8

  • 1R D.Nussbaum Global bifurcation of periodic sdu tion of some autonomous fum tional differential equations[J].J Math and Appl,1976,55:699- 725.
  • 2齐鸣鸣,潘家齐.时滞Van der pol型方程的Hopf分支图[J].东北师大学报(自然科学版),2000,32(2):11-17. 被引量:2
  • 3岳锡亭,潘家齐.具有限时滞van der Pol方程的周期扰动Hopf分枝[J].数学年刊(A辑),1992,1(2):135-142. 被引量:11
  • 4I,AMBERT JD. Numerical Melhod for Ordinary Differential Equations [M].Chichester: John Wiley, 1991.
  • 5KAZARINO N, WAN Y H, Van den Driessche P. Hopf Bifurcation and Stability of Periodic Solutions of Differential Difference and Integro- Differential Equations[J].Joumal of the Institute of Mathemati cal Appliations, 1978,21 : 461-467.
  • 6HALE J, I.UNEI. SV. Introduction to Functional Differenlial Equations[M].New York: Spring-Verlag, 1993.
  • 7GUCKENHEIMER J, HOLMES P J.No Linear Oscillations, Dynamical Systems and Bifurcation of Vector Fields[M].New York:Spring Verlag,1983.
  • 8NEVII.I.E FORD, VOLKER WUI.F. Numerica Hopf Bifurcation for a class of delay Differentia Equations [J].JCAM, 2000,115:601- 616.

二级参考文献5

  • 1潘家齐,数学年刊.A,1991年,12卷,1期,50页
  • 2丁同仁,南京大学学报.数学半年刊,1987年,1页
  • 3张小萍,解析不等式,1987年
  • 4潘家齐,数学年刊.A,1991年,12卷,150页
  • 5Hassard B D,Theory and application of Hopf bifurcation,1981年,56页

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部