期刊文献+

Effects of the structural order of canthaxanthin on the Raman scattering cross section in various solvents:A study by Raman spectroscopy and ab initio calculation 被引量:1

Effects of the structural order of canthaxanthin on the Raman scattering cross section in various solvents:A study by Raman spectroscopy and ab initio calculation
下载PDF
导出
摘要 In this work,we measure the Raman scattering cross sections(RSCSs) of the carbon-carbon(CC) stretching vibrational modes of canthaxanthin in benzene,acetone,n-heptane,cyclohexane,and m-xylene.It is found that the absolute RSCS of CC stretching mode of canthaxanthin reaches a value of 10 24 cm ^-2 ·molecule ^-1 ·sr ^-1 at 8×10 ^-5 M,which is 6 orders of magnitude larger than general RSCS(10 30 cm 2 ·molecule 1 ·sr 1),and the RSCSs of canthaxanthin in various solvents are very different due to the hydrogen bond.A theoretical interpretation of the magnetic experimental results is given,which is introduced in a qualitative nonlinear model of coherent weakly damped electron-lattice vibration in the structural order of polyene chains.In addition,the optimal structure and the bond length alternation(BLA) parameter of canthaxanthin are calculated using quantum chemistry calculation(at the b3lyp/6-31g(d,p) level of theory).The theoretical calculations are in good agreement with the experimental results.Furthermore,the combination of Raman spectroscopy and the quantum chemistry calculation study would be a quite suitable method of studying the structures and the properties of the π-conjugated systems. In this work,we measure the Raman scattering cross sections(RSCSs) of the carbon-carbon(CC) stretching vibrational modes of canthaxanthin in benzene,acetone,n-heptane,cyclohexane,and m-xylene.It is found that the absolute RSCS of CC stretching mode of canthaxanthin reaches a value of 10 24 cm ^-2 ·molecule ^-1 ·sr ^-1 at 8×10 ^-5 M,which is 6 orders of magnitude larger than general RSCS(10 30 cm 2 ·molecule 1 ·sr 1),and the RSCSs of canthaxanthin in various solvents are very different due to the hydrogen bond.A theoretical interpretation of the magnetic experimental results is given,which is introduced in a qualitative nonlinear model of coherent weakly damped electron-lattice vibration in the structural order of polyene chains.In addition,the optimal structure and the bond length alternation(BLA) parameter of canthaxanthin are calculated using quantum chemistry calculation(at the b3lyp/6-31g(d,p) level of theory).The theoretical calculations are in good agreement with the experimental results.Furthermore,the combination of Raman spectroscopy and the quantum chemistry calculation study would be a quite suitable method of studying the structures and the properties of the π-conjugated systems.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期195-200,共6页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant Nos. 11004252 and 10974067) the National Basic Research Program of China (Grant No. 2012CB722802)
关键词 Raman spectroscopy the bond length alternation(BLA) parameter quantum chemistry calculation CANTHAXANTHIN Raman spectroscopy the bond length alternation(BLA) parameter quantum chemistry calculation canthaxanthin
  • 相关文献

参考文献13

  • 1Paraschuk D Y and Kobryunskii V M 2001 Phys. Rev. Lett. 87 207402.
  • 2Guo J D, Luo Y and Himo F 2002 Chem. Phys. Lett. 366 73.
  • 3Tschirner N, Schenderlein M, Brose K, Schlodder E, Mroginski M A, Thomsen C and Hildebrandt P 2009 Phys. Chem. Chem. Phys. 11 11471.
  • 4Zigmantas D, Hiller R G, Sharples F P, Frank H A, SundstrSm V and Polfvka T 2004 Phys. Chem. Chem. Phys. 6 3009.
  • 5Kopsel C, M51tgen H, Schuch H, Auweter H, Kleinermanns K, Martin H D and Bettermann H 2005 J. Mol. Struct. 750 109.
  • 6Tian Y J, Zhang L Y, Zuo J, Li Z W, Gao S Q and Lu G H 2007 Antal. Chim. Acta 581 154.
  • 7Tian Y J, Zuo J, Zhang L Y, Li Z W, Gao S Q and Lu G H 2007 Appl. Phys. B 87 727.
  • 8OuYang S L, Sun C L, Zhou M, Li Z L, Men Z W, Li D F, Li Z W, Gao S Q and Lu G H 2010 J. Raman Spectrosc. 41 1650.
  • 9OuYang S L, Wu N N, Sun C L, Liu J Y, Li Z W and Gao S Q 2010 Chin. Phys. B 19 093103.
  • 10Frisch M J, Truck G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Zakrzewski V G, Montgomery J A Jr, Stratmann R E, Burant J C, Dapprich S, Millam J M, Daniels A D, Kudin K N, Strain M C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson G A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Boboul A G, Stefnov B B, Liu G, Liaschenko A, Piskorz P, Komaromi L, Gomperts R, Martin R L, Fox D J, Keith T, AILaham M A, Peng C Y, Nanayakkara A, Gonzalez C, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Andres J L, Gonzalez C, Head-Gordon M, Replogle E S and Pople J A 2003 GA USSIAN 03, revision A.1 end.; Gnassian, Inc.: Pittsburgh, PA.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部