期刊文献+

Dielectronic recombination and resonant transfer excitation processes for helium-like krypton 被引量:1

Dielectronic recombination and resonant transfer excitation processes for helium-like krypton
下载PDF
导出
摘要 The relativistic configuration interaction method is employed to calculate the dielectronic recombination(DR) cross sections of helium-like krypton via the 1s2lnl '(n = 2,3,...,15) resonances.Then,the resonant transfer excitation(RTE) processes of Kr 34+ colliding with H,He,H 2,and CH x(x = 0-4) targets are investigated under the impulse approximation.The needed Compton profiles of targets are obtained from the Hartree-Fock wave functions.The RTE cross sections are strongly dependent on DR resonant energies and strengths,and the electron momentum distributions of the target.For H 2 and H targets,the ratio of their RTE cross sections changes from 1.85 for the 1s2l2l ' to 1.88 for other resonances,which demonstrates the weak molecular effects on the Compton profiles of H 2.For CH x(x = 0-4) targets,the main contribution to the RTE cross section comes from the carbon atom since carbon carries 6 electrons;as the number of hydrogen increases in CH x,the RTE cross section almost increases by the same value,displaying the strong separate atom character for the hydrogen.However,further comparison of the individual orbital contributions of C(2p,2s,1s) and CH 4(1t 2,2a 1,1a 1) to the RTE cross sections shows that the molecular effects induce differences of about 25.1%,19.9%,and 0.2% between 2p-1t 2,2s-2a 1,and 1s-1a 1 orbitals,respectively. The relativistic configuration interaction method is employed to calculate the dielectronic recombination(DR) cross sections of helium-like krypton via the 1s2lnl '(n = 2,3,...,15) resonances.Then,the resonant transfer excitation(RTE) processes of Kr 34+ colliding with H,He,H 2,and CH x(x = 0-4) targets are investigated under the impulse approximation.The needed Compton profiles of targets are obtained from the Hartree-Fock wave functions.The RTE cross sections are strongly dependent on DR resonant energies and strengths,and the electron momentum distributions of the target.For H 2 and H targets,the ratio of their RTE cross sections changes from 1.85 for the 1s2l2l ' to 1.88 for other resonances,which demonstrates the weak molecular effects on the Compton profiles of H 2.For CH x(x = 0-4) targets,the main contribution to the RTE cross section comes from the carbon atom since carbon carries 6 electrons;as the number of hydrogen increases in CH x,the RTE cross section almost increases by the same value,displaying the strong separate atom character for the hydrogen.However,further comparison of the individual orbital contributions of C(2p,2s,1s) and CH 4(1t 2,2a 1,1a 1) to the RTE cross sections shows that the molecular effects induce differences of about 25.1%,19.9%,and 0.2% between 2p-1t 2,2s-2a 1,and 1s-1a 1 orbitals,respectively.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期220-226,共7页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant Nos. 1179041,11025417,and 10979007) the NSAF (Grant No. 10876043)
关键词 dielectronic recombination Compton profile resonant transfer excitation dielectronic recombination Compton profile resonant transfer excitation
  • 相关文献

参考文献27

  • 1Fuchs T, Biedermann C, Radtke R, Behar E and Doron R 1998 Phys. Rev. A 58 4518.
  • 2Tanis J A, Bernstein E M, Clark M W, Graham W G, McFarland R H, Morgan T J, Mowat J R, Mueller D W, Muller A, Stockli M P, Berkner K H, Gohil P, McDonald R J, Schlachter A S and Sterns J W 1986 Phys. Rev. A 34 2543.
  • 3Tanis J A, Bernstein E M, Graham W G, Stockli M P, Clark M, McFarland R H, Morgan T J, Berkner K H, Schlachter A S and Sterns J W 1984 Phys. Rev. Lett. 53 2551.
  • 4Ma X, Mokler P H, Bosch F, Gumberidze A, Kozhuharov C, Liesen D, Sierpowski D, Stachura Z, Stohlker Th and Warczak A 2003 Phys. Rev. A 68 042712.
  • 5Dong C Z and Fu Y B 2006 Acta Phys. Sin. 55 107.
  • 6Dong C Z, Wang J G, Qu Y Z and Li J M 1999 Phys. Scr. T80 301.
  • 7Nakano T, Kubo H, Higashijima S, Asakura N, Takenaga H, Sugie T and Itami K 2002 Nucl. Fusion 42 689.
  • 8Hehre W J, Ditchfield R and People J A 1972 J. Chem. Phys. 56 2257.
  • 9Dunning T H Jr 1989 J. Chem. Phys. 90 1007.
  • 10Woon D E and Dunning T H Jr 1994 J. Chem. Phys. 100 2975.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部