期刊文献+

混合细菌觅食算法求解整数规划问题

Research of Hybrid Bacterial Foraging Algorithm for Integer Programming
下载PDF
导出
摘要 利用混合细菌觅食算法(PO-BFA)求解整数规划问题,并与量子粒子群算法(QPSO)的求解结果进行对比。经过适当的参数设置混合细菌觅食算法可以有效地解决整数规划问题,在搜索过程中没有出现早熟现象,而且PO-BFA在求解整数规划问题上的整体性能比QPSO更优。 The performance of the bacterial foraging algorithm combined with partmle swarm optimization and opposition-based learning(PO-BFA) for integer programming was investi- gated. With the proper setting, the experimental results indicated that PO-BFA efficiently solved the problems of integer programming and converged faster than the QPSO algorithm in most cases.
作者 麦雄发 李玲
出处 《广西科学院学报》 2012年第3期187-189,共3页 Journal of Guangxi Academy of Sciences
基金 科学计算与智能信息处理广西高校重点实验室项目(GXSCIIP201204) 广西教育厅科研基金项目(201106LX310 201204LX216)资助
关键词 细菌觅食算法 量子粒子群算法 整数规划 bacterial foraging algorithm, quantum-behaved particle swarm optimization, integer programming
  • 相关文献

参考文献9

  • 1Malasri S,Martin JR,Medina R A,et al. Solving math- ematical programming problems using genetic algo- rithms[C]//Proc of the 3rd Conference on Computing in Civil Engineering, 1996 : 233-239.
  • 2Laskarie, Parsopoulosk, Vrahatism. Particle swarm op- timization for integer programming[C] //Proc of Con- gress on Evolutionary Computation Washington DC: IEEE Computer Society, 2002 .. 1582-1587.
  • 3杨荣华,刘建华.量子粒子群算法求解整数规划的方法[J].科学技术与工程,2011,11(33):8195-8198. 被引量:8
  • 4刘静,须文波,孙俊.基于量子粒子群算法求解整数规划[J].计算机应用研究,2007,24(3):79-81. 被引量:17
  • 5Passino K M. Biomimiery of bacterial foraging for distributed optimization and control[J]. IEEE Control Systems Magazine,2002,22(3) :52-67.
  • 6麦雄发,李玲,彭昱忠.基于PSO与对立学习的细菌觅食算法[J].计算机工程,2011,37(23):171-173. 被引量:6
  • 7Kennedy J, Eberhart R C. Particle swarm optimization [C]//Proc of the IEEE Int Conf on Neural Networks. Piscataway, NJ : IEEE Service Center, 1995 : 1942-1948.
  • 8Simon D. Biogeography-based optimization [J]. IEEE Trans on Evolutionary Computation, 2008,12 (6) : 702- 713.
  • 9Tizhoosh H. Opposition-based learning: A new scheme for machine intelligence[C]//Proceedings of International Conference on Computational Intel- ligence for Modelling Control and Automation,vol, 1 : 695-701,2005.

二级参考文献24

  • 1刘静,须文波,孙俊.基于量子粒子群算法求解整数规划[J].计算机应用研究,2007,24(3):79-81. 被引量:17
  • 2刘小龙,李荣钧.基于粒子群算法的细菌觅食全局优化算法[J/OL].中国科技论文(2010-04-28).http://www.paperedu.cn/paper_oo0b51.
  • 3Passino K M. Biomimicry of Bacterial Foraging for Distributed Optimization and Control[J]. IEEE Control Systems Magazine, 2002, 22(3): 52-67.
  • 4Biswas A, Dasgupta S, Das S, et al. Synergy of PSO and Bacterial Foraging Optimization: A Comparative Study on Numerical Benchrnarks[C]//Proc. of HAIS'07. Berlin, Germany: Springer- Verlag, 2007: 255-263.
  • 5Korani W M. Bacterial Foraging Oriented by Particle Swarm Optimization Strategy for PID Tuning[C]//Proc. of GECCO'08. Atlanta, USA: [s. n.], 2008: 12-16.
  • 6Tizhoosh H. Opposition-based Learning: A New Scheme for Machine Intelligence[C]//Proc. of International Conference on Computational Intelligence for Modeling Control and Automation. Vienna, Austria: Is. n.], 2005: 695-701.
  • 7Simon D. Biogeography-based Optimization[J]. IEEE Trans. on Evolutionary Computation, 2008, 12(6): 702-713.
  • 8Mai Xiongfa, Li Ling. Opposition-based Bacterial Foraging Optimization Algorithm[C]//Proc. of ICCCI'10. Nanning, China: [s. n.], 2010: 145-148.
  • 9Kennedy J, Eberhart R. Particle Swarm Optimization. Proceedings of IEEE International Conference on Neural Networks. Piscataway: 1995 : 1942-1948.
  • 10Shi Y, Eherhart R C. A modified particle swarm optimization. Proceedings of IEEE International Conference on Evolutionary Computation, Anchorage, 1998:69-73.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部