期刊文献+

模块度优化启发式算法应用

Application of heuristic method based on modularity optimization
下载PDF
导出
摘要 模块度优化的启发式快速算法常常用来检测复杂网络中的社团结构。较之其余的社团检测方法,该算法在计算时间上更具优势,而且用模块度衡量发现检测社团的质量很高。运用模块度优化启发式算法划分空手道俱乐部网络、大学足球俱乐部网络和区域贸易网络等,并对其结构和功能做出一定的分析。特别地,针对贸易网络中自由贸易区往往表现为一个社团的特点,以221个国家或地区为研究对象,对贸易协定与地域之间的关系做了大量的实证研究。首先,从世贸组织网站上采集了区域贸易协定中国家之间贸易的数据;其次,通过模块度启发式算法进行社团划分,共得出7个主要的贸易区,其中欧盟自由贸易区的社团表现极为明显;最后,从社团结构的表现形式推断实际区域间的贸易情况。 The heuristic method based on modularity optimization is usually used for detecting the community structure of complex networks. The heuristic method has the advantage of fast computation time over all other community detection methods. Mo reover, the communities measured by the modularity have very good quality. In this paper, a heuristic method based on modu larity optimization is used to detect the karate club network, the university football club network and regional trade agreements network and their structures and functions are analyzed. Particularly, aiming at the feature that the free trade area in the trade network has been one community, the paper takes 221 countries or regions as research objects and makes large num hers of empirical studies on the relationship between trade agreement and region. Firstly, the trade data of these countries in the trade agreement are collected from WTO web site; Secondly, they are divided into communities through heuristic method based on modularity optimization and seven trade areas are got. Among these communities, the free trade area of European Union is an obvious community; Finally, the real trade situation is deduced from the community structure.
机构地区 华东师范大学
出处 《现代电子技术》 2012年第19期127-130,共4页 Modern Electronics Technique
关键词 网络 社团结构 模块度优化启发式算法 社团检测 network community structure heuristic method based on modularity optimization community detection
  • 相关文献

参考文献8

  • 1GIRVAN M, NEWMAN M E J. Community structure in so- cial and biological networks[J]. Proceedings of the National Academy of Science, 2002, 99 (12): 7821-7826.
  • 2BLONDEL V D, GUILLAUME J-L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks [J].Journal of Statistical Mechanics: Theory and Experiment, 2008 (10): 10008-10019.
  • 3PASTOR-SATORRAS R, VESPIGNANI A. Evolution and structure of the Internet[M]. Cambridge, England: Cam- bridge University Press, 2004.
  • 4GUIMERA R, NUNES Amaral L A. Functional cartogra- phy of complex metabolic networks [J]. Nature, 2005, 433 (7028) : 895-900.
  • 5ZACHARY W W. An information flow model for conflict and fission in small groups[J]. Journal of Anthropological Research, 1977, 33 (4): 452-473.
  • 6GIRVAN M, NEWMAN M E J. Community structure in social and biological networks [J]. Proceedings of the Na- tional Academy of Science, 2002, 99 (12): 7821-7826.
  • 7NEWMAN M E J. Modularity and community structure in networks [J]. Proceedings of National Academy of Science, 2006, 103: 8577-8582.
  • 8DUCH J, ARENAS A. Community detection in complex networks using extremal optimizatio[J]. Phys. Rev., 2005, 72 (2): 7104-7107.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部