期刊文献+

光谱数据对油页岩含油率近红外光谱分析PLS建模精度的影响 被引量:3

Effect of Near Infrared Spectrum on the Precision of PLS Model for Oil Yield from Oil Shale
下载PDF
导出
摘要 目前油页岩关键的评价参数——含油率的检测方法均无法实现原位测量,无法满足油页岩资源的勘查和开采中样品检测的要求。便携式近红外光谱分析技术,为实现油页岩含油率的原位检测提供了可能性。由于光谱数据的不同形式与样品的成分含量值之间有不同的相关关系,样品不同成分的吸收特性表现在不同的近红外波段上,因此利用合成样品,针对反射率、吸光度、K-M函数等三种不同的光谱数据表示形式和四种不同的建模区间,研究它们对油页岩含油率PLS模型精度的影响情况。结果表明:对于合成样品,进行PLS建模的最佳光谱数据形式是反射率,最佳建模区间是组合特征区间,即适当的光谱数据形式及建模区间可提高模型的精度。 It is impossible to use present measurement methods for the oil yield of oil shale to realize in-situ detection and these methods unable to meet the requirements of the oil shale resources exploration and exploitation. But in-situ oil yield analysis of oil shale can be achieved by the portable near infrared spectroscoPy technique. There are different correlativities of NIR spectrum data formats and contents of sample components, and the different absorption specialities of sample components shows in different NIR spectral regions. So with the proportioning samples, the PLS modeling experiments were done by 3 formats (reflectance, absorbance and K-M function) and 4 regions of modeling spectrum, and the effect of NIR spectral format and region to the precision of PLS model for oil yield from oil shale was studied. The results show that the best data format is reflectance and the best modeling region is combination spectral range by PLS model method and proportioning samples. Therefore, the appropriate data format and the proper characteristic spectral region can increase the precision of PLS model for oil yield form oil shale.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2012年第10期2770-2774,共5页 Spectroscopy and Spectral Analysis
基金 吉林省科技发展计划项目(20116014) 国家潜在油气资源(油页岩勘探开发利用)产学研用合作创新项目子课题(OSR-02-04)资助
关键词 近红外光谱 油页岩 含油率 PLS建模 数据形式 特征光谱区间 NIR spectroscopy Oil shale Oil yield PLS model Data format Characteristic spectral region
  • 相关文献

参考文献16

  • 1The Mensuration of Oil Yield form Oilshale- Low Temperature Carbonization(油页岩含油率测定法(低温干馏法)),SH/T0508-92.
  • 2Passey Q R. AAPG Bulletin, 1990, 74(12): 1777.
  • 3SONG Ning, HOU Jian-guo, WANG Wen-jun(宋宁,侯建国,王文军).海洋石油,2001,21(1):8.
  • 4HE Jun-ling, DENG Shou-wei, CHEN Wen-long, et al(贺君玲,邓守伟,陈文龙,等).吉林大学学报·地球科学版,2006,36(6):909.
  • 5Snyder R W, Painter P C, Conauer D C. Fuel, 1983, 62: 1205.
  • 6Shlomo Shoval, Yaaeov Nathan. Journal of Thermal Analysis and Calorimetry, 2011, 105: 883.
  • 7Kristin N Alstadt, Dinesh R Katti, Kalpana S Katti. Spectrochimica Acta Part A, 2010, 89.. 105.
  • 8Tong Jianhui, Han Xiangxin, Wang Sha, et al, Energy Fuels, 2011, 29(9): 4006.
  • 9XIE Fang-fang, WANG Ze, SONG Wen-li, et al(谢芳芳,王泽,宋文立).光谱学与光谱分析,2011,31(1):91.
  • 10Romeo M J, Adams M J, Hind A R, et al. Journal of Nearinfrared Spectroscopy, 2002, 10(3) : 223.

共引文献1

同被引文献29

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部