期刊文献+

电感耦合等离子体质谱法测定甜味剂中重金属元素 被引量:28

Direct Determination of Heavy Metal Elements in Sweeteners by Inductively Coupled Plasma Mass Spectrometry
下载PDF
导出
摘要 采用微波消解-八极杆碰撞/反应池(ORS)-电感耦合等离子体质谱仪(ICP-MS)测定甜味剂中Cr,Co,Ni,Cu,As,Cd,Sn,Sb,Hg,Pb等十种重金属元素的含量。样品用硝酸+双氧水消解后,试液直接用ICP-MS法进行测定。应用ORS技术,有效地消除了多原子离子对待测元素的干扰,选用45Sc,89 Y,115In和209 Bi等元素为内标混合液校正基体效应和信号漂移,确定了实验的最佳测定条件。结果表明,该方法对十种待测元素的检出限在0.003~0.038μg.L-1之间,加标回收率在93.0%~106.6%之间,相对标准偏差(RSD)≤3.4%。方法简便、快速、准确,可以用于食品甜味剂质量控制和安全评价。 An analysis method of microwave digestion and inductively coupled plasma-mass spectrometry (ICP-MS) with octopole reaction system (ORS) was established for the determination of 10 heavy metal elements including Cr, Co, Ni, Cu, As, Cd, Sn, Sb, Hg and Pb in sweetener. Samples were decomposed by HNO3 and H2O2 followed by dilution with ultrapure water then the above 10 heavy metal elements in the solution were analyzed directly by ICP-MS. The use of ORS can eliminate the interference of polyatomic ions dramatically. ^45 Sc, ^89 Y, ^115In and ^209Bi as internal standard elements were used to compensate matrix effect and signal drift. The optimum conditions for the determination was tested and discussed. Under the optimal conditions, the detection limits of the 10 elements were in the range of 0. 003-0. 038 μg · L^-1 , the recovery of the samples was in the range of 93.0%-106. 6% and the relative standard deviation(RSD)≤3.40/00, which showed that the method was very precise. The technique was applied for the quality control and safety evaluation of sweetener.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2012年第10期2838-2841,共4页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(21075138) 重庆市自然科学基金项目(cstc2011jjA0780) 重庆市教委科学技术研究项目(KJ121311)资助
关键词 电感耦合等离子体质谱法 八极杆碰撞/反应池 甜味剂 重金属元素 Inductively Coupled Plasma Mass Spectrometry(ICP-MS) Octopole reaction system(ORS) Sweetener Heavy metal elements
  • 相关文献

参考文献12

  • 1MIWei,WANGJing(米微,王晶).生物化学与生物物理进展,2010,37(2):224.
  • 2JIAWei,ZHAOYan,QIANXiao-hong(贾伟,赵焱,钱小红).质谱学报,2010,31(2):65.
  • 3Herwig N, Stephan K, Panne U, et al. Food Chemistry, 2011, 124(3).. 1223.
  • 4Avivar J, Ferrer L, Casas M, et al. Journal of Analytical Atomic Spectrometry, 2012, 27(2): 327.
  • 5Pick D, Leiterer M, Einax J W. Microchemical Journal, 2010, 95(2) .. 315.
  • 6Batista B L, Rodrigues J L, Nunes J A, et al. Analytica Chimica Acta, 2009, 639(1-2) : 13.
  • 7Popp M, Harm S, Mentler A, et al. Analytical and Bioanalytical Chemistry, 2008, 391(2): 695.
  • 8Feuerstein J, Boulyga S F, Galler P, et al. Journal of Environmental Radioactivity, 2008, 99 (11) .. 1764.
  • 9Xie H L, Huang K L, Liu J C, et al. Analytical and Bioanalytieal Chemistry, 2009, 393(8) : 2075.
  • 10Schaeffer R, Francesconi K A, Kienzl N, et al. Talanta, 2006, 69(4).. 856.

同被引文献511

引证文献28

二级引证文献243

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部