期刊文献+

航空发动机尾气静电信号去噪方法研究 被引量:3

The Research of Aero-engine Exhaust Electrostatic Signal Denoising Methods
下载PDF
导出
摘要 针对航空发动机尾气静电信号噪声大,信噪比低的状况,研究了静电信号去噪方法。通过对强制软阈值小波去噪、默认阈值小波去噪、自适应提升小波去噪以及经验模态分解去噪四种方法的深入研究。以及基于matlab平台对各去噪方法的实现。对比分析四种方法在航空发动机实际试车中静电信号的去噪效果。结果表明,EMD方法对于尾气静电信号有较好的去噪效果,其他三种方法也可以实现不同程度的去噪。 According to the high noise and low SNR conditions of aeroengine exhaust electrostatic signal, the methods of signal denoising are studed. Through indepth studying the theory of four methods of mandatory soft threshold wavelet denoising, the default threshold wavelet denoising, adaptive lifting wavelet denoising and empiri cal mode decomposition denoising, as well as implementing of the four kinds of denoising methods based on matlab platform, the denoising results of the four methods in electrostatic signal of an aeroengine commissioning process are compared. The results show that EMD does better for the exhaust electrostatic signals denoising, however the other three methods can achieve different levels of denoising as well.
出处 《科学技术与工程》 北大核心 2012年第28期7298-7302,7325,共6页 Science Technology and Engineering
基金 国家自然科学基金与中国民航联合资助基金重点项目(60939003) 高等学校博士学科点专项科研基金(20113218120027)资助
关键词 静电监测 信号去噪 小波 EMD 自适应提升 electmatatic monitor signal denoiaing wavelet EMD adaptive lifting
  • 相关文献

参考文献10

二级参考文献31

  • 1孙艳争,黄炜,余波.基于EMD的非线性信号自适应分析[J].电子科技大学学报,2007,36(1):24-26. 被引量:11
  • 2HUANG N E, SHEN Z, LONG S R et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and-stationary Time Series Analysis[J]. Proc R Soc Lond A, 1998,454( 1971 ) :903- 995.
  • 3BOUDRAA A O, CEXUS J C. EMD-based Signal Filtering [ J ]. IEEE Transactions on Instrumentation and Measurement, 2007, 56 (6) :2196-2202.
  • 4Powrie H E G, McNicholas K. Gas path condition monitoring during accelerated mission testing of a demonstrator engine[R]. AIAA 1997 2904, 1997.
  • 5Powrie H E G, Fisher C E. Engine health monitoring: towards total prognostics[C]//IEEE Aerospace Conference Proceedings. 1999, 3: 11-20.
  • 6Fisher C E. Gas path debris monitoring-a 21st century PHM tool[C]//IEEE Aerospace Conference Proceedings. 2000, 6: 441-448.
  • 7Novis A, Powrie H E G. PHM Sensor implementation in the real world-a status report[C]//IEEE Aerospace Conference Proceedings. 2006:1-9.
  • 8Powrie H E G, Novis A. Gas path debris monitoring for F-35 joint strike fighter propulsion system PHM[C]// IEEE Aerospace Conference Proceedings. 2006.
  • 9Lapini G L, ZippoM, Tirone G. The use of electrostatic charge measurements as an early warning of distress in heavy-duty gas turbines[C]//ASME Turbo Expo Proceedings. 2001.
  • 10HUANG N E. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proc R Soc Lond A,1998,454:903-995.

共引文献86

同被引文献20

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部