摘要
In order to research the temperature distribution and mechanical deformation of slab bulging during high speed continuous casting, mathematical models have been developed to analyze the thermal and mechanical behavior of the slab. The thermal history of the slab has been predicted by a two-dimensional transient finite element heat transfer model, whose results serve as the input to the stress model. The stress model has been formulated for a two-dimensional longitudinal plane. In this case,the maximum tensile strain during the bulging process is located at the solidification fi'ont just past the top of the upstream roll,which may contribute to crack formation. The maximum tensile stresses are located at the cold surface in the middle of the two back-up rolls ,just at the point of the maximum bulging. Stresses near the solidification fi'ont are small because of the high temperatures which produce lower elastic modulus values. Finally,the effect of the casting speed on the bulging deformation is discussed.
In order to research the temperature distribution and mechanical deformation of slab bulging during high speed continuous casting, mathematical models have been developed to analyze the thermal and mechanical behavior of the slab. The thermal history of the slab has been predicted by a two-dimensional transient finite element heat transfer model, whose results serve as the input to the stress model. The stress model has been formulated for a two-dimensional longitudinal plane. In this case,the maximum tensile strain during the bulging process is located at the solidification fi'ont just past the top of the upstream roll,which may contribute to crack formation. The maximum tensile stresses are located at the cold surface in the middle of the two back-up rolls ,just at the point of the maximum bulging. Stresses near the solidification fi'ont are small because of the high temperatures which produce lower elastic modulus values. Finally,the effect of the casting speed on the bulging deformation is discussed.