摘要
随着检测底层DDoS攻击的技术不断成熟和完善,应用层DDoS攻击越来越多。由于应用层协议的复杂性,应用层DDoS攻击更具隐蔽性和破坏性,检测难度更大。通过研究正常用户访问的网络流量特征和应用层DDoS攻击的流量特征,采用固定时间窗口内的请求时间间隔以及页面作为特征。通过正常用户和僵尸程序访问表现出不同的特点,对会话进行聚类分析,从而检测出攻击,经过实验,表明本检测算法具有较好的检测性能。
With the maturity of the low-level detection of DDoS attacks, DDoS attacks gradually transferred to the application layer. Because of the complexity of the application layer protocol, application layer DDoS attacks more destructive, and more subtle to detect. This paper studies the normal user' traffic characteristics of accessing the web server and traffic characteristics of the DDoS attacks flow. Take the time interval between two requests and the web pages visited as a feature, normal user session and bots attack sessions showed different characteristics, we propose a spactral clustering based dection method, to find out DDoS attacks. The experimental results show that the detection algorithm has better detection performance.
关键词
DDOS
应用层
聚类
异常检测
DDoS
application layer
clustering
anomaly detection