期刊文献+

一类新的非线性时滞积分不等式及其应用

Some New Nonlinear Retarded Integral Inequalities and Their Applications
下载PDF
导出
摘要 建立了一类新的非线性时滞积分不等式,推广了已有的若干研究结果,并用之研究了某些微分方程解的有界性. In this tend several existing quatmns. paper, a class of new nonlinear retarded integral inequalities are established, and ex- results. The Inequalities are used to study the boundedness of some differential e-
作者 龙磊 孟凡伟
出处 《滨州学院学报》 2012年第3期26-29,共4页 Journal of Binzhou University
基金 国家自然科学基金资助项目(11171178) 教育部高等学校博士学科点专项科研基金(20103705110003) 山东省自然科学基金资助项目(ZR2009AM011) 山东省教育基金资助项目(J11LA51)
关键词 时滞积分不等式 微分方程 有界性 retarded integral inequality differential equation boundedness.
  • 相关文献

参考文献8

  • 1Bellman R. The stabilitiy of solutions of linear differential equations [J], Duke Math J,1943,10:,643 - 647.
  • 2Borysenko S D. Integral-sum inequalities for functions of many independent variables [J]. DifferEqu,1989,2519:1638 - 1641.
  • 3Pachpatte B G. Explicit Bounds on certain Integral Inequalities[J]. J Math Anal Appl,2002,267 :48-61.
  • 4Sergiy Borysenko, Gerardo Iovane. About some new integral inequalities [J]. Nonlinear Analysis,2007,66:2190 -2203.
  • 5Tong J. The asymptotic behavior of a class of nonlinear differential equations of second order [J].Proc Amer Math Soc,1982,84:121.
  • 6Yang Enhao. Boundedness conditions for solutions of differential equation (a(t) xf) f(t, x) = 0[J], Nonlinear Analysis, 1984,8 : 541 ~ 548.
  • 7郑召文,孟扬.一类新型积分不等式及其应用[J].滨州学院学报,2010,26(3):23-26. 被引量:1
  • 8Meng Fanwei, Ji Dehong. On some new nonlinear discrete inequalities and their applications [J].Journal of Computational and Applied Mathematics,2007,208 :425 - 433.

二级参考文献4

  • 1Gripenberg G.On some epidemic models[J].Quart Appl Math,1981,39:317-327.
  • 2Pachpatte B G.On a new inequality suggested by the study of certain epidemic models[J].J Math Anal Appl,1995,195:638-644.
  • 3邓宗琦,阮士贵.Gronwall-Bellman不等式综述[C] //邓宗琦.常微分方程与控制论论文集.武汉:华中师范大学出版社,1987:1-29.
  • 4尤秉礼.常微分方程补充教程[M].北京:高等教育出版社,1981.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部