期刊文献+

基于数值积分卡尔曼-概率假设密度滤波的多说话人跟踪方法 被引量:1

Cubature Kalman-Probability Hypothesis Density Filter for Multiple Speakers Tracking
下载PDF
导出
摘要 针对多说话人跟踪的非线性系统模型,提出了一种基于数值积分卡尔曼-概率假设密度滤波的多说话人跟踪方法。该方法采用麦克风阵列的时间延迟估计作为观测数据,利用具有三次代数精度的球面-径向数值积分准则计算非线性系统贝叶斯滤波器中的多维积分,通过数值积分卡尔曼滤波和概率假设密度滤波对后验多说话人状态的一阶统计量进行估计,并通过递推更新得到说话人状态信息,实现非线性高斯系统的多说话人跟踪。该方法无需求解非线性系统函数的雅克比矩阵,且计算量较小。仿真实验分析了检测概率、虚警点数目、采样周期、信噪比以及混响时间变化时跟踪算法的性能。实验结果表明,该方法降低了系统模型非线性对滤波算法的影响,增强了跟踪算法的鲁棒性,提高了说话人状态和数目的估计精度。 Aiming at nonlinear system model in multiple speakers tracking,a cubature Kalman-probability hypothesis density filter for multiple speakers tracking is proposed in this paper.Time difference of arrival for microphone array is taken as measurements,third-degree spherical-radial rule is utilized to compute the multidimensional integral in Bayesian filter of nonlinear system in proposed method,cubature Kalman filter and probability hypothesis density filter is applied to estimate first-order statistical moment of posterior multiple speakers states,and finally multiple speakers tracking of nonlinear Gaussian system is realized while the speakers’ states are extracted by recursive updating.Compared with some filters in multiple speakers tracking,the proposed method has several advantages.Calculating Jacobian matrix of nonlinear system function,which is usually hard to be done,is no longer necessary in proposed filter and computational complexity also goes down.Simulation experiments have been taken to analyze the performance of proposed method when detection probability,false speakers’ number,sampling period,speech-signal-to-noise ratio and reverberation time varies.Simulation results show that the proposed method reduces the impact on the performance of filtering algorithm from nonlinear system model,enhances the robustness of the algorithm,and improves estimation accuracy of multiple speakers’ number and states.
出处 《信号处理》 CSCD 北大核心 2012年第9期1209-1218,共10页 Journal of Signal Processing
基金 国家自然科学基金(61172110 61172107 60772161) 高等学校博士点专项科研基金(200801410015)资助课题~~
关键词 多说话人跟踪 概率假设密度滤波 卡尔曼滤波 非线性滤波 Multiple speakers tracking; Probability hypothesis density filter; Kalman filter; Nonlinear filter
  • 相关文献

参考文献17

  • 1Kapralos B,Jenkin M R M, Milios E. Audiovisual locali- zation of multiple speakers in a video teleconferencing set- ting [ J ]. International Journal of Imaging Systems and Technology ,2003,13 ( 1 ) :95-105.
  • 2Gatica-Perez D, Lathoud G, Odobez J-M, etc. Audiovisual probabilistic tracking of multiple speakers in meetings [ J]. IEEE Transactions on Audio, Speech, and Lan- guage Processing,2007,15 (2) :601- 616.
  • 3Wang Q H, Ivanov T, Aarabi P. Acoustic robot navigation using distributed microphone arrays [ J ]. Information Fu- sion ,2004,5 : 131-140.
  • 4Brandstein M. A framework for speech source localization using sensor arrays [ D ]. Providence : Massachusetts In- stitute of Technology, Brown University, 1995.
  • 5Potamitis I, Chen H, Tremoulis G. Tracking of multiple moving speakers with microphone arrays [ J ]. IEEE Transactions on Speech and Audio Processing, 2004, 12 (5) :520-529.
  • 6Vermaak J, Blake A. Nonlinear filtering for speaker track- ing in noisy and reverberant environments [ C ]. IEEE In- ternational Conference on Acoustics, Speech, and Signal Processing. Salt Lake City, Utah, USA: IEEE, 2001. 3021-3024.
  • 7Ma W-K,Vo B-N,Singh S S, etc. Tracking an unknown time-varying number of speakers using TDOA measure- ments: a random finite set approach [ J ]. IEEE Transac- tions on Signal Processing,2006,54 (9) : 3291-3304.
  • 8Arasaratnam I, Haykin S. Cubature Kalman filter [ J ]. IEEE Transactions on Automatic Control, 2009,54 ( 6 ) : 1254-1269.
  • 9尹建君.Gaussian Sum PHD Filtering Algorithm for Nonlinear Non-Gaussian Models[J].Chinese Journal of Aeronautics,2008,21(4):341-351. 被引量:14
  • 10Vo B-N, Singh S. Sequential Monte Carlo methods for mul-titarget filtering with random finite sets [ J]. IEEE Trans- actions on Aerospace and Electronic Systems, 2005,41 ( 4 ) : 1224-1245.

二级参考文献1

共引文献13

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部