期刊文献+

基于自适应阈值分割的宫颈细胞图像分类算法 被引量:10

Classification of Cervical Cell Images based on Adaptive Thresholding Segmentation
下载PDF
导出
摘要 本文以宫颈癌细胞图像的自动筛查为应用背景,研究了一种新的宫颈细胞图像分类算法。算法首先采用形态学滤波与自适应直方图均衡的预处理方法进行图像增强;根据对图像内容与直方图分布关系的深入分析,提出采用经验因子加权Otsu自适应阈值分割算法进行细胞核分割,有效地解决了细胞重叠所引起的自适应分割阈值的选取问题;然后,通过提取面积、周长、区域面积与外接凸多边形面积比以及长宽比四种参数,对分割出的细胞核区域进行杂质剔除;最后以最能体现癌细胞特征的面积、平均灰度作为特征参数采用K-means算法对样本图像进行分类实验。实验样本为233幅宫颈细胞图像,其中49幅癌细胞图像,184幅正常细胞图像,实验结果证明了该算法的有效性。 This paper presents a new method of automatically screening cervical cancerous cell images.The proposed method first enhanced the cervical cell images by a morphological filtering and adaptive histogram equalization method.Then,an Experiential-Factor-Weighted Otsu Thresholding algorithm,which solves the biases of traditional Otsu thresholding method due to the overlapping of cells in images,is presented for segmentation of the cell nuclei.To extract the largest cell nuclei,the algorithm uses four features,which are area,perimeter,ratio of area and convex area,ratio of length and width of the segmented cell nuclei.Finally,to classify the cell images into normal and abnormal ones,the K-means clustering algorithm is employed on the basis of two cell nuclei features: area and mean gray level,which are extracted from the largest cell nuclei.Experiments were done on 233 cervical cell images including 49 cancerous cell images and 184 normal cell images.The experiment results validated the proposed method.
出处 《信号处理》 CSCD 北大核心 2012年第9期1262-1270,共9页 Journal of Signal Processing
基金 国家自然科学基金No.60975023~~
关键词 细胞核分割 形态学滤波 自适应直方图均衡 OTSU算法 K-MEANS算法 Cell nuclei segmentation; morphological filtering; adaptive histogram equalization; Otsu algorithm; K-means algorithm
  • 相关文献

参考文献18

  • 1Kuie TS. Cervical cancer: its causes and prevention[M]. Singapura: Times Book Int, 1996.
  • 2Duanggate C, Uyyanonvara B, and Koanantakul T. A re- view of image analysis and pattern classification tech- niques for automatic pap smear screening process [ C ] ff In International Conference on Embedded Systems and Intel- ligent Technology. 2008. 212-217.
  • 3Stenkvist B. The development of a fully automated cervical cancer screening device, based on malignancy associated changes (MAC), image analysis (IA) and artificial in- telligence (AI) [J]. Cancer Detection and Prevention, 17( 1 ). 1993.
  • 4Tsai MH, Chan YK, Lin ZZ, Yang-Mao SF, Huang PC. Nucleus and cytoplast contour detector of cervical smear image [ J ]. Pattern Recognition Letters, 2008, 29 : 1441-1453.
  • 5Yung-Mao SF, Chan YK, Chu YP. Edge Enhancement Nucleus and Cytoplast Contour Detector of Cervical Smear Images[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2008,38 ( 2 ) : 353-366.
  • 6Plissiti ME, Nikou C, Charchanti A. Automated Detec- tion of Cell Nuclei in Pap Smear Images Using Morpholog- ical Reconstruction and Clustering [ J ]. IEEE Transac- tions on Information Technology in Biomedicine ,2011,15 (2) :233-241.
  • 7Robert Hummel. Image enhancement by histogram trans- formation [ J ]. Computer Graphics and Image Processing, 1977,6(2) :184-195.
  • 8N. Otsu. A threshold selection method from gray-level his- tograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979,9 ( 1 ) :62-66.
  • 9Mat-Isa NA, Mashor MY, Othman NH. An automated cervical pre-cancerous diagnostic system [ J ]. Artificial Intelligence in Medicine,2008,42:1-11.
  • 10Plissiti ME, Nikou C, Charchanti A. Watershed-based segmentation of cell nuclei boundaries in Pap smear ima- ges[C]//Proceedings of the IEEE/EMBS Region 8 Inter- national Conference on Information Technology Applica- tions in Biomedicine,ITAB,2010.

二级参考文献13

  • 1殷蔚明,王典洪.Otsu法的多阈值推广及其快速实现[J].中国体视学与图像分析,2004,9(4):219-223. 被引量:25
  • 2赵瑶池,蔡自兴.一种对光照具有鲁棒性的图像分割方法[J].计算机应用研究,2005,22(9):154-155. 被引量:3
  • 3刘雷健,杨静宇,曹雨龙,邬永革,汪华峰.肺癌细胞识别彩色图像处理系统[J].自动化学报,1996,22(3):382-384. 被引量:5
  • 4Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on System Man and Cybernetic, 1979,9 ( 1 ) :62 - 66.
  • 5Rddi S S, Keshavan H R. An optimal multiple threshold scheme for image segmentation [ J ]. IEEE Trans, 1984. SMC214(4) :661-665.
  • 6H. Tian, S. K. Lam, T. Srikanthan. Implementing OTSU' s Thresholding Process Using Area-time Efficient Logarithmic Approximation Unit [ J ]. Circuits And Systems, 2003, 5 : IV_21 -IV_24.
  • 7Lin KC. On improvement of the computation speed of Otsu' s image thresholding[ J ]. JOURNAL OF ELECTRONIC IMAGING 14 (2) : Art. No. 023011 APR-JUN 2005.
  • 8Blayvas I, Bruckstein A, Kimmel R. Efficient Computation of Adaptive Threshold Surfaces for Image Binarization [ J ]. In :Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001,1 : 1-737 -1-742.
  • 9Koss L G,Shenman M E,Cohen M B,et al.Significant reduction in the rate of false-negative cervical smears with neural network-based technology(PAPNET Testing System)[ J ].Hum Pathol,1997,(28):1186-1203.
  • 10CastlemanKR.数字图像处理[M].北京:清华大学出版社,1998..

共引文献6

同被引文献95

  • 1林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:322
  • 2王殿成,曾立波,郑宏,高细见.基于多光谱的宫颈细胞图像迭代分割算法[J].计算机工程与应用,2005,41(10):191-193. 被引量:2
  • 3潘京生.改善光纤倒像器的对比度传递特性[J].应用光学,2006,27(1):62-65. 被引量:7
  • 4M E Plissiti, C Nikon, A Charchanti. Automated detection of cell nuclei in pap smear images using morphological reconstruction and clustering [J]. IEEE Trans Inf Technol B, 2011, 15(2): 233-241.
  • 5M E Plissiti, C Nikou, A Charchanti, Watershed based segmentation of cell nuclei boundaries in pap smear images [C]. Proceedings of the IEEE/EMBS Region 8 International Conference on Information Technology Applications in Biomedicine, ITAB, 2010.
  • 6: N A Mat-Isa, M Y Mashor, N H Othman. An automated cervical pre cancerous diagnostic system [ J ]. Artificial Intelligence in Medicine, 2008, 42(1) : 1- 11.
  • 7Christoph Bergmeir, Miguel Garcia Silvente, Jose Manuel Benitez. Segmentation of cervical cell nuclei in high-resolution microscopic images: a new algorithm and a web-based software framework [ J ]. Computer Methods and Programs in Biomedicine, 2012, 107(3) : 497- 512.
  • 8Negar M Harandi, Saeed Sadri, Noushin A Moghaddam, et al. An automated method for segmentation of epithelial cervical cells in images of ThinPrep [J]. J Medical Systems, 2010, 34 (6) : 1043- 1058.
  • 9M H Tsai, Y K Chan, Z Z Lin, et al. Nucleus and cytoplast contour detector of cervical smear image [J]. Pattern Recogn Lett, 2008, 29(9): 1441-1453.
  • 10S F Yang-Mao, Y K Chan, Y P Gbu. Edge enhancement nucleus and cytoplast contour detector of cervical smear images [J]. IEEE Trans Systems, Man, and Cybernetics, 2008, 38(2) : 353-366.

引证文献10

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部