期刊文献+

基于粒子滤波的Turbo盲均衡 被引量:2

Turbo Blind Equalization Based on Particle Filter
下载PDF
导出
摘要 粒子滤波是一种基于贝叶斯估计的算法,在信道盲辨识和盲均衡问题上具有快收敛、抗深衰信道等优势。Turbo盲均衡在低信噪比条件下有较好的误码性能。为了在深衰信道下使通信具有良好的误码性能,对粒子滤波盲均衡算法进行改进,改进算法的重要性采样函数利用了粒子的先验信息,得到一种软输入软输出的粒子滤波盲均衡算法。依据Turbo盲均衡的框架结构实现了一种基于粒子滤波的Turbo盲均衡算法,该算法利用信道编码带来的编码增益,提高了均衡和信道辨识的性能。仿真结果表明相比粒子滤波盲均衡算法本文提出算法的误码率性能提高1dB左右,误帧率性能则提高了3dB以上,经分析可知在信道系数估计较为准确的条件下,系统数据帧几乎没有误码。 Particle filter(PF),which is based on the Bayesian theory,is particularly useful in dealing with the blind channel identification and blind equalization for its fast convergence and its outstanding performance of resisting multiple-path fading channels.Under the low SNR conditions the bit error rates(BER) of Turbo blind equalization are much lower.In order to get good BER performance in multiple-path fading channels,the particle filter algorithm for blind equalization is modified.The important sampling function of particle filtering exploits the prior information of the particles and the soft input soft output(SISO) particle filter equalization algorithm is proposed.Considering the structure of Turbo blind equalization,a new Turbo blind equalization based on particle filter is proposed,which makes use of the channel coding gain.Therefore,the performance of equalization and channel identification are improved.The simulation result shows that compared to the particle filter equalization algorithm,the bit error rates(BER) of the proposed algorithm have a gain of about 1dB,and the frame error rates(FER) have a gain of above 3dB.By analyzing,there are hardly error bits under the condition of accurate estimation of the channel coefficients.
出处 《信号处理》 CSCD 北大核心 2012年第9期1284-1289,共6页 Journal of Signal Processing
基金 国家自然科学基金资助项目(61072046)
关键词 信道盲辨识 盲均衡 粒子滤波 Turbo盲均衡 blind channel identification blind equalization particle filter Turbo blind equalization
  • 相关文献

参考文献11

  • 1Clapp T, Godsill S J. Bayesian blind deconvolution for mobile communications [ C ]//IEE Colloquium on Adap- tive Signal Processing for Mobile Communication Sys- tems. London : IEEE, 1997.9/1-9/6.
  • 2Mfguez J and Bugallo M F. Blind equalization by sequen- tial importance sampling [ C ]//2002 IEEE International Symposium on Circuits and Systems. Scottsdale: IEEE, 2002.845- 848.
  • 3Djuric P,Etar M. Particle filtering[J]. IEEE Signal Pro- cessing Magazine ,2003,20 ( 5 ) : 19-38.
  • 4王磊,刘郁林.基于粒子滤波器的盲辨识和盲均衡新方法[J].通信学报,2006,27(10):132-135. 被引量:6
  • 5Bordin C J, Bruno M G S. Particle filters for joint blind e- qualization and decoding in Frequency-selective Channels [ J ]. IEEE Trans. On Signal Processing, 2008,56 ( 6 ) : 2395 -2405.
  • 6Barembruch S, Garivier A, and Moulines E. On approximatemaximum-likelihood methods for blind identification: How to cope with the curse of dimensionality[ J]. IEEE Trans. On Signal Processing,2009,57 ( 11 ) :4247-4259.
  • 7Douillard C, Picart A, Didier P, et al. Iterative correction of intersymbol interference : turbo-equalization [ J ]. Euro- pean Trans. Telecommun, 1995,6 ( 5 ) : 507-511.
  • 8Hagenauer J. The turbo Principle: Tutorial introduction and state of the art. Proc. Int. Syrup [ C ] // On Turbo Codes and Related Topics. Brest: ENST Bretagne, 1997. 1-11.
  • 9Liu H and Schnite P. Iterative frequency-domain channel estimation and equlization for single-carrier transmissions without cyclic-prefix[ J]. IEEE Trans. On Wireless Com- munications ,2008,7 (10) :3686-3691.
  • 10Kun Fang, Luca Rugini and Geert Leus. Block Transmis- sions over Doubly Selective Channels: herative Channel Estimation and Turbo Equalization [ J ]. EURASIP Journalon Advances in Signal Processing,2010,2010 (2) : 1-13.

二级参考文献10

  • 1SATO Y.A method of self-recovering equalization for multilevel Amplitude-Modulation systems[J].IEEE Transactions on Communications,1975 23:679-682.
  • 2BEILINI S.Bussgang techniques for blind deconvolution[A].Blind Deconvolution[C].Prentice Hall,Englewood Cliffs,NJ,1994.
  • 3MENDEL J M.Tutorial on higher-order statistics (spectra) in signal processing and system theory:theoretical results and some application[J].Proc of IEEE,1991,79(3):278-305.
  • 4GARDNER W A.A new method of channel identification[J].IEEE Transactions on Communications,1991,39(6):813-817.
  • 5DJURIC P,ETAR M.Particle filtering[J].IEEE Signal Processing Magazine,2003,20(5):19-38
  • 6FEARNHEND P.Sequential Monte Carlo Methods in Filter Theory[D].Oxford University,1998.
  • 7ARULAMPALAM S,MASKELL S,GORDON N,et al.A tutorial on particle filters for on-line non-linear/non-gaussian bayesian tracking[J].IEEE Transactions on Signal Processing,2002,50(2):174-188.
  • 8CLAPP T.Statistical Methods for the Processing of Communications Data[D].Cambridge University,2000.
  • 9CLAPP T,GODSILL S J.Bayesian blind deconvolution for mobile communications[A].IEE Colloquium on Adaptive Signal Processing for Mobile Communication Systems[C].IEE,Savoy Place,London,1997.911-916.
  • 10MIGUEZ J,DJURIC P M.Blind equalization by sequential importance sampling[A].Proceedings of IEEE ISCAS[C].Phoenix,AZ,2002.845-848.

共引文献5

同被引文献29

  • 1王磊,刘郁林.基于粒子滤波器的盲辨识和盲均衡新方法[J].通信学报,2006,27(10):132-135. 被引量:6
  • 2Sari H,Karam G,Jeanclaude I.Frequency-domain equalization of mobile radio and terrestrial broadcast channels[C].Global Telecommunications Conference,1994,1:1-5.
  • 3Gordon N J,Salmond D J,Smith A F M.Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].IEE Proceedings F Radar and Signal Processing,1993,140(2):107-113.
  • 4Negusse S,Zetterberg P.Cost reference particle filter in data aided channel estimation and phase noise tracking for OFDM systems[C].IEEE International Conference on Acoustics,Speech,and Signal Processing,2012:3153-3156.
  • 5Jaechan Lim,Daehyoung Hong.Gaussian particle filtering approach for carrier frequency offset estimation in OFDM systems[J].IEEE Signal Processing Letters,2013,20(4):367-370.
  • 6Chu D.Polyphase codes with good periodic correlation properties[J].IEEE Transactions on Information Theory,1972,18(4):531-532.
  • 7Frank R,Zadoff S,Heimiller R.Phase shift pulse codes with good periodic correlation properties[J].IRE Transactions on Information Theory,1962,8(6):381-382.
  • 8Zeng Yong-hong,Ng T S.Pilot cyclic prefixed single carrier communication:channel estimation and equalization[J].IEEE Signal Processing Letters,2005,12(1):56-59.
  • 9Wang Hong-shen,Chang Pao-chi.On verifying the firstorder Markovian assumption for a Rayleigh fading channel[J].IEEE Transactions on Vehicular Technology,1996,45(2):353-357.
  • 10Doucet A,Godsill S,Andrieu C.On sequential Monte Carlo sampling methods for Bayesian filtering[J].Statistics and Computing,2000,10:197-208.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部