期刊文献+

CUDA平台下的超声弹性成像并行处理算法 被引量:2

A Parallel Algorithm of Ultrasound Strainimaging Based on CUDA
下载PDF
导出
摘要 超声弹性模式成像是新兴高端超声成像系统中出现的新型成像模式,与传统的黑白超,彩超成像模式不同,它能够为临床诊断提供组织器官的硬度信息。弹性成像模式可以帮助医生定性和定量地检测组织的弹性值变化,特别是对一些肿瘤疾病如乳腺癌等的早期检测有巨大的推动作用,因此,这一新型检测手段具有十分重大的临床应用价值。但是弹性成像系统在处理时涉及大量的复杂运算,使其难于在临床实时系统中得到应用,为此文章研究并提出一种基于CUDA(Compute Unified Device Architecture,统一计算设备架构)平台的超声弹性成像模式并行处理算法。算法包括了信号预处理,运动计算,应变估计和图像后处理与显示等处理步骤的并行实现。由弹性体模得到的数据实验表明,基于CUDA的超声弹性成像处理结果与基于CPU的实现相比,不仅可以得到相同质量的显示图像,而且可以取得较大的加速效果,满足实时系统需求,文章的数据测试显示对于256×512的信号数据能够达到63fps的帧率,速度提高了85倍。 Ultrasound strain imaging is a brand new imaging mode in the high-end ultrasound imaging system. It can detect and calculate the stiffness of tissues and organs while the traditional imaging mode can't like B-mode and color mode. This new-style imaging mode will help doctors qualitatively detect the changes in tissue elasticity and obtain much more precise quantitative information of the variance of tissue and organ stiffness. Thus, there are significant meanings in clinical application. However, because of the massive computation involved in the current ultrasound elasticity imaging system, it will be hard and costly to implement with the traditional processing platform. In this paper, a new algorithm of ultrasound elasticity imaging based on CUDA(Compute Unified Device Architecture) parallel processing platform is presented. This method mainly includes the following parallel procedures such as pre-processing, motion calculation, strain estimation, post processing and so on. Test results from the elastic phantom data, not only show the output of graphics processing unit(GPU) is definitely the same as the one of CPU, but also demonstrate the obvious speedup using GPU, that is, it can achieve 63fps for the data size(256 beam lines, 512 sample points) which is 85 times faster than the CPU implementation.
作者 张霞 何兴无
出处 《计算机与数字工程》 2012年第9期113-116,共4页 Computer & Digital Engineering
关键词 高性能并行计算 超声弹性成像 图形处理器 图像并行处理算法 high performance parallel processing ultrasound strain Imaging GPU parallel algorithm for image processing
  • 相关文献

参考文献10

  • 1K. Kirk. Shung. Diagnostic Ultrasoundimaging and blood flow measurements[M]. CRC Press, 2005 (4) .. 80-94.
  • 2T. A. Krouskop, D. R. Dougherty, and F. S. Vinson. A pulsed Doppler ultrasonic system for making noninvasive easurements of the mechanical properties of soft tissue[J]. J. Rehabil. Res. Dev. ,1987,24(1) ..1-8.
  • 3M. O'Donnell, A. R. Skovoroda, B. M. Shapo, andS. Y. Emeli- ahoy. Internal displacement and strain imaging using ultrasonic speckle tracking[J]. IEEE Trans. Ultrason. , Ferroeleet. , Freq. Contr. ,1994,41(3) 314-325.
  • 4NVIDIA Corporation. CUDA Programming Guide4.0[S/OL]. 1-2011-05-06. http://www, nvdia, com.
  • 5夏春兰,石丹,刘东权.基于CUDA的超声B模式成像[J].计算机应用研究,2011,28(6):2011-2015. 被引量:16
  • 6范正娟,谭朝炜,刘东权.基于CUDA的彩色超声血流成像[J].计算机应用,2011,31(3):856-859. 被引量:8
  • 7胡宏伟,王肖,郝卫军.CPLD和双口RAM在图像采集系统的设计应用[J].舰船电子工程,2012,32(3):14-16. 被引量:5
  • 8F. Kallel and J. Ophir. A least-squares strain estimator for elas- tography[J]. Ultrason. Imaging, 1997,19 (3) : 195-208.
  • 9Dan Shi, Dong C. Liu et al. Fast GPU-Based Automatic Time Gain Compensation for Ultrasound ImagingEC. IEEE Inter- national Con{erence on Bioinformatics and Biomedical Engi- neering, 2010 : 1271-1274.
  • 10Dan Shi, Xiaoying Li, Dong C. Liu. Optimized GPU Frame- work for Speckle Reduction Using Histogram Matching and Region Growing [C//IEEE International Conference on Bioinformatics and Biomedical Engineering, 2010 .. 1005-1008.

二级参考文献27

  • 1冯健,张化光,刘金海,孙凯,任河.分布式网络化数据采集装置及其采集方法[J].仪器仪表学报,2006,27(z2):1296-1297. 被引量:3
  • 2吴恩华.图形处理器用于通用计算的技术、现状及其挑战[J].软件学报,2004,15(10):1493-1504. 被引量:141
  • 3刘刚,向健勇.一种高速图像采集存储系统的设计[J].电子工程师,2006,32(5):39-41. 被引量:3
  • 4KASAI C, NAMEKAWA K. Real-time two-dimensional blood flow imaging using an autocorrelation technique [ J]. IEEE Transactions on Sonics Ultrasonic, 1985, 32(3) : 458 -464.
  • 5LIU DC, KIM J, SCHARDT M. Modified autocorrelation method compared with maximum entropy method and RF cross-correlation method as mean frequency estimator for Doppler ultrasound [ C]// Proceedings of the 1991 Conference on Ultrasonic Symposium. Washington, DC: IEEE Press, 1991:1285-1290.
  • 6BONNEFOUS O, PESQUE P. Time domain formulation of pulse- Doppler ultrasound and blood velocity estimation by cross correlation [J]. Ultrasonic Imaging, 1986, 8(2): 73-85.
  • 7BRANDS P J, HOEKS A P G, LEDOUX L A F, et al. A radio fre- quency domain complex cross-correlation model to estimate blood flow velocity and tissue motion by means of ultrasound [ J]. Ultra- sound in Medicine and Biology, 1997, 23(6): 911 -920.
  • 8NVIDIA CUDA Programming Guide 2.3 [ EB/OL]. [ 2009 - 08 - 26]. http://developer.download.nvidia.com/compute/euda/2_3/ toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3, pdf.
  • 9CHANG LIWEN, HSU K, LI P-C. Graphics processing unit based high frame rate color Doppler ultrasound processing [ J]. IEEE Transactions on Ultrasonic Ferroelectfics and Frequency Control, 2009, 56(9) : 1856 - 1860.
  • 10FAN ZHENGJUAN, SHI DAN, LIU D C. Optimized GPU frame- work for ultrasound color flow imaging [ C]// ICBBE 2010: Pro- ceedings of the 4th IEEE International Conference on Bioinformatics and Biomedical Engineering. Chengdu, China: IEEE Press, 2010: 1-4.

共引文献19

同被引文献25

  • 1Lindop J E,Treece G M,Gee A H, et al. 3D Elasto- graphy Using Freehand Ultrasound [ J ]. Ultrasound in Medicine & Biology ,2006,32(4 ) :529-545.
  • 2Shiina T,Nitta N, Sjsum E U, et al. Real Time Tissue Elasticity Imaging Using the Combined Autocorrelation Method [ J ]. Journal of Medical Ultrasonics, 2002, 29(3) :119-128.
  • 3Zhou Yongjin, Zheng Yongping. A Motion Estimation Refinement Framework for Real-time Tissue Axial Strain Estimation with Freehand Ultrasound [ J ]. 1EEE Tran- sactions on Ultrasonics, Ferroelectrics and Frequency Control, 2010,57 ( 9 ) : 1943-1951.
  • 4Rivaz H, Boctor E, Foroughi P, et al. Ultrasound Elasto- graphy : A Dynamic Programming Approach [ J]. IEEE Transactionson Medical Imaging, 2008,27 ( 10 ) : 1373- 1377.
  • 5Zahiri A R. Salcudean S E. sound Images Using Time Motion Estimation in Ultra- Domain Cross Correlation with Prior Estimates [ J ]. IEEE Transactions on Bio- medical Engineering, 2006,53 ( 10 ) : 1990-2000.
  • 6Hoyt K, Forsberg F, Ophir J. Comparison of Shift Estimation Strategies in Spectral Elastography[ J ]. Ultra- sonics,2006,44(1 ) :99-108.
  • 7Kennedy J, Kennedy J F, Eberhart R C. Swarm Intelligence [ M ][ S. I. ] : Morgan Kaufmann, 2001.
  • 8Rivaz H, Boctor E M, Choti M A, et al. Real-time Regularized Ultrasound Elastography [ J ]. IEEE Tran- sactions on Medical Imaging, 2011,30 ( 4 ) : 928-945.
  • 9Spears W M,Green D T, Spears D F. Biases in Particle Swarm Optimization[ J]. International Journal of Swarm Intelligence Research ,2010,2 ( 1 ) :34-57.
  • 10秦臻,任培罡,姚姚,张才.弹性波正演模拟中PML吸收边界条件的改进[J].地球科学(中国地质大学学报),2009,34(4):658-664. 被引量:22

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部