期刊文献+

分形理论在气体放电研究中的应用 被引量:3

Research on the Discharge of Electricity of Gases with Fractal Theory
下载PDF
导出
摘要 用分形理论对气体放电现象进行了分析和研究 ,建立了一个基于分形基本计算元的气体放电过程的分形模型 .该模型仅有若干个容易观测、确定的气体放电的特征参数 ,可以很好地适应各类气体的高电压放电过程的描述 。 fractal theory is used to analyze and study the phenomenon of the discharge of electricity of gases.A fractal model based on fractal basic computing unit of the discharge of electricity of gases is built.The model has only a number of feature parameters about the discharge of electricity,with are very easy to observe and determinate.The model can be widely used in describing the course of the discharge of electricity of a good many kinds of gases.
出处 《长沙水电师院学报(自然科学版)》 2000年第3期37-38,共2页
关键词 分形 自相似 气体放电 起晕电压 击穿电压 fractal part integer self similarity fractal basic computing unit the beginning voltage the staving voltage
  • 相关文献

参考文献1

  • 1张一方.粒子的分形模型、复数维及其意义.大自然探索,1988,7(2):21-23.

共引文献7

同被引文献31

  • 1罗俊华,杨黎明,姜芸,盛龙宝.电力电缆运行、故障及试验综述[J].电力设备,2004,5(8):4-8. 被引量:57
  • 2Niemeyer L, Pietronero L, Wiesmann H J. Fractal dimension of dielectric breakdown[J]. Phys Rev Lett, 1984, 52(12) : 1033-1036.
  • 3Wiesmann H J, Zeller H R.A fractal model of dielectric breakdown and brebreakdown in solid dielectrics[J]. J Appl Phys, 1986, 60(5): 1770-1773.
  • 4Noskov M D, Sack M, Malinovski A S, et al. Measuremnet and simulation of electrical tree growth and paritial discharge activity in epoxy resin [J].J Phys D: Appl Phys, 2001, 34(9):1389-1398.
  • 5Noskov M D, Sack M, Malinovski A S, et al. Self-consistent modeling of electrical tree propagation and PD activity[J].IEEE Trans on Dielectrics and Electrical Insulation, 2000, 7(6):725-733.
  • 6Noskov M D, Malinovski A S. Modelling of partial discharge development in electrical tree channels[J]. IEEE Trans on Dielectrics and Electrical Insulation, 2003, 10(3):425-434.
  • 7Kudo K. Fractal analysis of electrical trees[J]. IEEE Trans on Dielectrics and Electrical Insulation, 1998, 5(5):713-727.
  • 8Barclay A L, Sweeney P J, Dissado L A, et al. Stochastic modeling of electrical treeing:fractal and statistical characteristics[J]. J Phys D: Appl Phys, 1990, 23(12) : 1536-1545.
  • 9Farr T, Vogelsang R, Frohlich K. A new deterministic model for tree growth in polymer with barrlers[C]. 2001 Annual Report Conference on Electrical Insulation and Dielectric Phenomena(CEIDP 2001). [S.l.],2001.
  • 10Sweeney P J, Dissado L A, Cooper J M. Simulation of effect of barriers upon electrical tree propagation[J].J Phys D: Appl Phys, 1992, 25(1):113-119.

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部