摘要
如果对于图G的每个满足|L(v)|=k(其中v为G的任意顶点)的列表分配L,G都存在一个L-着色,使得G的每个顶点至多有d个邻居与其自己着有相同的颜色,则称图G是(k,d)*-可选的。在只用欧拉公式和图的结构性质研究2-连通平面图的(3,1)*-列表着色的基础上,研究欧拉公式在平面图的(3,1)*-列表着色中的应用,证明欧拉公式在研究有割点的平面图的(3,1)*-列表着色时也是有效的。
A graph G is called (k ,d)* -choosable if, for every list assignment L satisfying {L(v)}=k for all v∈ V(G), there is an L-coloring of G such that each vertex of G has at most d neighbors colored with the same color as itself. Zhao and He first studied the (3,1) " -list coloring of the 2-connected planar graphs just by using Euler's formula and the graph's structural proper- ties. The paper continues to investigate the use of Euler's formula in (3,1)* -list coloring the planar graphs, and shows that Euler's formula is also practicable in dealing with the planar graphs containing cut vertices.
出处
《河北科技大学学报》
CAS
2012年第4期290-293,304,共5页
Journal of Hebei University of Science and Technology
基金
National Science Council under Grant(NSC95-2816-M-002-014)
河北省教育厅科研资助项目(Z2009140)
石家庄学院科研启动基金资助项目(09ZDA003)