期刊文献+

几种面向弹道目标跟踪算法的性能评估 被引量:3

Performance evaluation of several methods for tracking a ballistic object
下载PDF
导出
摘要 提出一种非线性滤波器性能的评估方法.在导弹系数未知的情况下,研究二维弹道目标动力学模型,推导相应的Cramer-Rao下界.分析扩展卡尔曼滤波器、无迹卡尔曼滤波器、积分卡尔曼滤波器和容积卡尔曼滤波器,基于推导出的Cramer-Rao下界,通过仿真实验比较这4种非线性滤波的性能.理论与实验结果表明,扩展卡尔曼滤波的实时性能最好,但跟踪精度较差;容积卡尔曼滤波器在跟踪的速度和精度方面都有较好的表现. A new evaluation method was proposed to solve the selection of nonlinear filters. The relevant Cramer-Rao lower bounds (CRLBs) were derived based on ballistic motion modal with an unknown ballistic coefficient in two-dimensional space. The performance of extended Kalman filter, unscented Kalman filter, quadrature Kalman filter and cubature Kalman filter was analyzed in theory and compared through simulation based on the concluded theoretical CRLBs. Both the theoretical analysis and the simulation results have indicated that the performance of extended Kalman filter is fast but inaccurate, and the cubature Kalman filter is desirable due to a better trade-off between the tracking accuracy and the computational load.
出处 《深圳大学学报(理工版)》 EI CAS 北大核心 2012年第5期392-398,共7页 Journal of Shenzhen University(Science and Engineering)
基金 国防科技重点实验室基金资助项目(914***007) 教育部博士点科学基金资助项目(20104408120001)~~
关键词 信息处理技术 弹道目标跟踪 非线性滤波器 容积卡尔曼滤波 无迹卡尔曼滤波 积分卡尔曼滤波 扩展卡尔曼滤波 information processing technology ballistic object tracking nonlinear filter cubature Kalman filter unscented Kalman filter quadrature Kalman filter extended Kalman filter
  • 相关文献

参考文献13

二级参考文献55

  • 1刘宗香,谢维信,黄敬雄.分布式异类传感器网Hough变换航迹起始算法[J].深圳大学学报(理工版),2007,24(2):111-116. 被引量:4
  • 2Bar shalom Y and Li X. Multitarget_Multisensor Tracking: Principles and Techniques [M]. Storrs, CT: YBS Publishing, 1995.
  • 3Blom H A P and Bar-shalom Y. The interacting multiple model algorithm for systems with markovian switching coefficients. IEEE Trans. on Automatic Control, 1988, 33(8): 780-783.
  • 4Arulampalam M S, Maskell S, and Gordon N. A tutorial on particle filters for on-line nonlinear non-Gaussian Bayesian tracking [J]. IEEE Trans. on Signal Processing, 2002, 50(2): 174-188.
  • 5Boers Y and Driessen J N. Interacting multiple model particle filter [J]. IEE Proc Radar Sonar Navig, 2003, 150(5): 344-349.
  • 6Sarkka S, Vehtari A, and Lampinen J. Rao- Blackwellized particle filter for multiple target tracking. Information Fusion, 2007, (8): 2-15.
  • 7Xu Xinyu and Li Baoxin. Adaptive Rao-Blackwellized particle filter and its evaluation for tracking in surveillance. IEEE Trans. on Image Processing, 2007, 16(3): 838-849.
  • 8Casella G and Robet C P. Rao Blackwellisation of sampling schemes. Biometrika, 1996, 83(1): 81-94.
  • 9Porat B, Friedlander B. The Exact Cramer-Rao Bound for Gaussian Autoregressive Processes [J]. IEEETrans. on AES, 1987, 23(7):537-541.
  • 10Lee H B. A Novel Procedure for Assessing the Accuracy of Hyperbolic Multilateration Systems [J]. IEEE Trans. onAES, 1995,31(11):2-15.

共引文献23

同被引文献27

  • 1张树春,胡广大.跟踪机动再入飞行器的交互多模型Unscented卡尔曼滤波方法[J].自动化学报,2007,33(11):1220-1225. 被引量:15
  • 2周政,刘进忙,李松.基于随机模型近似的再入目标自适应跟踪算法(优先出版)[J].北京航空航天大学学报,2013.12.24.
  • 3苏健.再入目标的高精度定位研究[D].国防科技大学,2007.
  • 4Paul S W.Short-time Fourier transforms and Wigner-Ville distributions applied to the calibration of power frequency harmonic analyzers[J].IEEE Transactions on Instrumentation and Measurement,1999,48(2):475-478.
  • 5Ray P K,Subudhi B. BFO optimized RLS algorithm for power system harmonics estimation[J].Applied Soft Computing,2012,12(8):1965-1977.
  • 6Rosendo Macías J A,Expósito A G.Self tuning Kalman filters for harmonic computation[J].IEEE Transactions on Power Delivery,2006,21(1):501-503.
  • 7Luo X,Moroz I M.Ensemble Kalman filter with the unscented transform[J].Physica D:Nonlinear Phenomena,2009,238(15):549-562.
  • 8Rambabu K,Bjarne F,Lars I.Applying the unscented Kalman filter for nonlinear state estimation[J].Journal of Process Control,2008,18(7/8):753-768.
  • 9Subudhi B,Ray P K.Estimation of power system harmonics using hybrid RLS-adaline and KF-adaline algorithms[C]// IEEE Region 10 Conference?TENCON.Singapore:IEEE Press,2009:1-6.
  • 10Hsiung C L.Intelligent neural network-based fast power system harmonic detection[J].IEEE Transactions on Industrial Electronics,2007,54(1):43-52.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部