期刊文献+

一类具有耦合边界项的多孔介质方程组的临界曲线(英文)

Critical Curves for a Porous Medium System Coupled via Nonlinear Boundary Flux
下载PDF
导出
摘要 本文研究一类具有非线性边界项的多孔介质方程组.通过构造自相似上下解得到一种新的临界Fujita曲线,这种临界Fujita曲线与低阶项系数有很大关系. The paper deals with the porous medium system with nonlinear boundary flux. By constructing selfsimilar supersolutions and subsolutions, we obtain the critical Fujita curve which is conjectured with the aid of some new re- sults. It shows that the coefficient of the lower order term is an important factor that determines the critical Fujita curve.
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第9期9-12,共4页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(11001189)
关键词 多孔介质方程组 临界Fujita曲线 非线性边界流 爆破 porous medium system critical Fujita curve nonlinear boundary flux blow-up
  • 相关文献

参考文献2

二级参考文献9

  • 1王泽佳,尹景学.Fujita Exponent for Porous Medium Equation with Convection and Nonlinear Boundary Condition[J].Northeastern Mathematical Journal,2003,19(4):387-395. 被引量:3
  • 2[1]Fujita,H.,On the blowing up of solutions of the Cauchy problem for ut = △u + u1+α,J.Fac.Sci.Univ.Tokyo Sect.IA Math.,13(1966),109-124.
  • 3[2]Levine,H.A.,The role of critical exponents in blow-up therems.SIAM Review,32(1990),262-288.
  • 4[3]Deng,K.and Levine,H.A.,The role of critical exponents in blow-up theorems: the sequel,J.Math.Anal.Appl.,243(1)(2000),85-126.
  • 5[4]Hu,B.and Yin,H.M.,On critical exponents for the heat equation with a mixed nonlinear Dirichlet-Neumann boundary condition,J.Math.Anal.Appl.,209(1997),683-711.
  • 6[5]Galaktionov,V.A.and Levine,H.A.,On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary,Israel J.Math.,94(1996),125-146.
  • 7[6]Huang,W.M.,Yin,J.X.and Wang,Y.F.,On critical fujita exponents for a degenerate parabolic equation with nonlinear boundary condition,J.Math.Anal.Appl.,286(2003),369-377.
  • 8[7]Aguirre,J.and Escobedo,M.,On the blow-up of solutions of a convective reaction diffusion equation,Proc.Roy Soc.Edinburgh Sect.A.,123(3)(1993),433-460.
  • 9[8]Galaktionov,V.A.,Kurdyumov,S.P.,Mikhailov,A.P.and Samarskii,A.A.,On unbounded solutions of the Cauchy problem for the parabolic equation ut = △(uσ△) +uβ,Dokl.Akad.Nauk SSSR.,252(6)(1980),1362-1364.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部