期刊文献+

扩展三段论的可化归性与广义量词的语义性质之间的关系 被引量:15

The Relations between/among the Reducibility of Extended Syllogisms and Semantic Properties of Generalized Quantifiers
下载PDF
导出
摘要 基于Barwise、Cooper、Keenan、Peters、Westersthl和vanEijck等人的研究成果,作者提出并证明了若干事实和推论。这些事实和推论表明:(1)不同三段论之间的可化归性本质上反映了广义量词的单调性、对称性等语义性质之间的可转换性,因此,我们可以根据四个亚氏量词的语义性质之间的转换关系来验证亚氏三段论的可化归性;(2)利用广义量词的语义性质可以验证扩展三段论的不同推理模式之间的可化归关系。由于广义量词在自然语言中普遍存在,因此,本文的研究对广义量词理论的发展和自然语言的信息处理都具有积极意义。 This paper draws chiefly on the ideas and methods in Barwise & Cooper, Keenan and Peters & Westersthl, and van Eijck, among many others. It attempts not only to expand on but also to make novel proposals. Some new facts and corollaries proved in this paper. They bring to light the following relationships: (1) The reducibility of different syllogisms essentially reflects transformability of different semantic properties (such as monotonicity and symmetry and so on) of generalized quantifiers. Therefore, the reducibility of Aristotelian syllogisms can be verified by the transformable relations between semantic properties of four Aristotelian quantifiers; (2) The reducible relations of different extended syllogistic schemes can be verified by semantic properties of gener- alized quantifiers. We provide many instances of valid extended syllogisms in this paper. Since generalized quantiflers are ubiquitous in natural languages, the present study will make contributions to the development of generalized quantifier theory as well as bring- ing about consequences to natural language information processing.
作者 张晓君
出处 《逻辑学研究》 CSSCI 2012年第2期63-74,共12页 Studies in Logic
基金 教育部人文社科研究规划项目"面向自然语言信息处理的广义量词理论研究"(批准号:12YJA72040001)
  • 相关文献

参考文献13

  • 1J.Barwise,R.Cooper. Generalized quantifiers and natural language[J].Linguistics and Philosophy,1981,(02):159-219.
  • 2J.Barwise,R.Cooper. Generalized quantifiers and natural language[M].Semantics:A Reader,Oxford University Press,2004.482-487.
  • 3J.van Eijck. Syllogistics = Monotonicity + Symmetry + Existential Import[OL].http://www.oai.cwi.nl/oai/asset/10940/10940D.pdf,2005.
  • 4E.L.Keenan,D.Westerst(a)hl. Generalized quantifiers in Linguistics and Logic[A].Amsterdam:Elsevier Science,1997.837-893.
  • 5W.A.Murphree. Numerically Exceptive Logic:A Reduction of the Classical Syllogism[M].New York:Peter Lang Publishing,Inc,1991.
  • 6S.Peters,D.Westerst(a)ihl. Quantifiers in Language and Logic[M].Oxford:clarendon Press,2006.
  • 7P.L.Peterson. Intermediate Quantifiers:Logic,Linguistics,and Aristotelian Semantics[M].Aldershot:Ashgate,2000.
  • 8F.Sommers,G.Englebretsen. An Invitation to Formal Reasoning:The logic of Terms[M].Aldershot:Ashgate,2000.
  • 9D.Westerst(a)hl. Quantifiers in formal and natural languages[A].2007.223-238.
  • 10L.A.Zadeh. A computational approach to fuzzy quantifiers in natural languages[J].Computers & Mathematics With Applications,1983.149-184.

二级参考文献8

  • 1J. Kontinen, Zero-One Law and Rational Quantigiers, staff, science, uva. nl/- katrenko/stus06/images/kontinen. pdf, pp. 1-12.
  • 2L.T.F. Gamut, Intensional Logic and Logical Grammar, University of Chicago Press, 1991, pp. 222-245.
  • 3S. Peters & D. Westerstahl, Quantifiers in language and logic, Claredon Press Oxford, 2006, p. 96 ; p. 160; pp. 163-185; p. 176; p. 176; p. 177.
  • 4M. Kanazawa, Dynamic Generalized Quantifiers and Monotonicity, Stanford University, http://www, inc. uva. nl/Publications/dgq, pdf, 1993, pp. 1-37.
  • 5K. Jaszczlot, Quantified Expressions, University of Cambridge, http://www, mml. cam. ac. uk/ling/courses/ ugrad/p_5, html, 2007/2008, pp. i-vi.
  • 6P. Saint-Dizier, Default Logic, Natural Language and Generalized Quantifiers, 1RISA-INRIA, http ://www. aclweb, org/antholgy-new/c/c88/c88-2117, pdf, 1988, pp. 555-561.
  • 7E. Ruys & Y. Winter, "Background on Generalized Quantifier Theory", 3 Oct. 2008 http ://www. cs. tech- nion. ac. il/ - winter/course/synsem, html, 1997, pp. 1-11.
  • 8R. Zuber. Symmetric and contrapositional quantifiers[J] 2007,Journal of Logic, Language and Information(1):1~13

共引文献14

同被引文献88

  • 1王振华,张大群,张先刚.马丁对语篇语义的研究[J].当代外语研究,2010(10):43-49. 被引量:15
  • 2林胜强,张晓君.广义量词的推理模式研究[J].湖南科技大学学报(社会科学版),2014,17(6):29-33. 被引量:8
  • 3张晓君,郝一江.广义量词的单调性与数字三角形[J].重庆理工大学学报:社会科学,2010(3):18-24.
  • 4张晓君,郝一江.广义量词的单调性及其检测方法[c]//中国分析哲学2009.杭州:浙江大学出版社,2010:101-113.
  • 5J. Barwise R. Cooper. Generalized Quantifiers and Natural Language[C] ff Semantics A Reader. Oxford: Ox- ford University Press, 2004 : 482-- 525.
  • 6D. Westerstahal. Quantifiers in Formal and Natural Languages[C]//Dr M. Gabbay - F. Guenthner , eds. Handbook of Philosophical Logic: 2th ed. 2007,14 223-- 338.
  • 7S. Peters - D. WesterstShal. Quantifiers in Language and Logic [M]. Oxford:Claredon Press, 2006.
  • 8J. Barwise J. Etchemendy. Language, Proof and Logic[M]. Stanford:CSLI Publications, 2003: 225--387.
  • 9G. Ben- Avi Y. Winter. Monotonicity and Collective Quantification[J]. Journal of Logic, Language and Informa- tion, 2003,(12) : 127--151.
  • 10L. Hella et al. Partially Ordered Connectives and Monadic Monotone Strict NP[J].Journal of Logic, Language and Information, 2008, (17) : 323--344.

引证文献15

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部