期刊文献+

含相关性随机变量的概率最优潮流问题的蒙特卡罗模拟方法 被引量:18

A Monte Carlo simulation method for probabilistic optimal power flow with correlated stochastic variables
下载PDF
导出
摘要 采用三阶多项式变换技术构建了一个可以处理非正态相关的多变量随机因素的概率最优潮流蒙特卡罗模拟模型。并使用该模型讨论了风力发电和负荷随机性对最优潮流解的影响,具体分析了随机变量的相关性以及波动幅度对系统运行成本、发电机组出力、边际电价以及节点电压、节点相角和线路潮流的影响。基于IEEE-118节点的算例分析表明,给出的三阶多项式变换技术所生成的相关系数和边际概率分布的随机数与指定值具有良好的拟合精度,而随机因素的相关性对概率最优潮流的影响显著,不可忽略。该方法提供了一个具有理论基础的的讨论工具。 A Monte Carlo simulation model based on third-order polynomial normal transformation (TPNT) is proposed to deal with probabilistic optimal power flow problems with non-normal dependent random variables. The model is employed to discuss the influence on the solutions of optimal power flow which is caused by wind generation and load stochastic variation. The influence of the relevance and fluctuation magnitude of stochastic variables on system operation costs, power output of generating units, marginal price, bus voltage, bus phase angle, and line flow is analyzed in depth. A case study on a slightly modified IEEE-118 system shows that the TPNT method is capable of generating stochastic samples with fixed marginal distributions and correlation matrixes. Besides, the influence of the correlation between stochastic variables is so significant that it could not be neglected. The presented method is a good tool to deal with the case.
作者 杨欢 邹斌
出处 《电力系统保护与控制》 EI CSCD 北大核心 2012年第19期110-115,共6页 Power System Protection and Control
关键词 概率最优潮流 蒙特卡罗模拟 随机变量 相关性 三阶多项式变换 probabilistic optimal power flow (P-OPF) Monte Carlo simulation random variables correlation third-orderpolynomial normal transformation (TPNT)
  • 相关文献

参考文献18

  • 1任博强,彭鸣鸿,蒋传文,栾士岩,林海涛,李磊,赵岩.计及风电成本的电力系统短期经济调度建模[J].电力系统保护与控制,2010,38(14):67-72. 被引量:72
  • 2袁建党,袁铁江,晁勤,李义岩.电力市场环境下大规模风电并网系统电源规划研究[J].电力系统保护与控制,2011,39(5):22-26. 被引量:31
  • 3Madrigal M, Ponnambalam K, Quintana V H. Probabilistic optimal power flow[C] // IEEE Canadian Conference on Electrical and Computer Engineering, Waterloo, Ont. 24-28 May 1998.
  • 4Tamtum A, Schellenberg A, Rosehart W D. Enhancements to the cumulantmethod for probabilistic optimal power flow studies[J]. IEEE Transaction on Power Systems, 2009, 24(4): 1739-1746.
  • 5董雷,程卫东,杨以涵.考虑支路随机断线的概率潮流方法及应用[J].电力系统保护与控制,2010,38(20):79-84. 被引量:15
  • 6Verbic C Canizares C A. Probabilistic optimal power flow in electricity markets based on a two-point estimate method[J]. IEEE Transaction on Power Systems, 2006, 21(4): 1883-1893.
  • 7潘炜,刘文颖,杨以涵.概率最优潮流的点估计算法[J].中国电机工程学报,2008,28(16):28-33. 被引量:48
  • 8Zhang H, Li P. Probabilistic analysis for optimal power flow under uncertainty[J]. IET Gener, Transm, and Distrib, 2010, 4(5): 553-561.
  • 9Morales J M, Baringo L, Conejo A J, et al. Probabilistic power flow with correlated wind sources[J], lET Gener, Transm, and Distrib, 2010, 4(5): 641-651.
  • 10Julio Usaola. Probabilistic load flow with correlated wind power injections[J]. Electric Power Systems Research, 2010: 528-536.

二级参考文献57

共引文献183

同被引文献252

引证文献18

二级引证文献156

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部