期刊文献+

映射领域可自主收缩的操作条件反射自动机 被引量:1

Operant conditioning automaton with mapping fields of spontaneous contraction
下载PDF
导出
摘要 为避免操作条件反射学习模型中存在发生小概率操作行为所引发的不良操作后果,设计了一种映射领域可在线自主收缩移动的操作条件反射自动机,映射领域指机器人各状态映射的操作行为集合,其收缩是通过定义学习误差的界限值和操作行为选取的概率阈值两个指标来实现的。对映射领域可自主收缩的操作条件反射学习的收敛性进行了分析,从理论上证明:操作行为熵随映射领域的收缩收敛至极小。针对两轮机器人运动平衡控制的仿真结果表明,映射领域的收缩性使操作条件反射自动机可以在线地在最有意义的映射领域内搜索学习,通过有效的动态的消除无用的映射区域,提高了系统的学习速度和精度。 The phenomenon of small probabilities operant action exists in operant conditioning learning model and the occurring of small probabilities operant action will lead to bad consequence.To avoid the phenomenon,an operant conditioning automaton is designed in which the mapping fields could contract spontaneously.The mapping field was defined as the mapping operant action set of each state and the contracted mapping field was implemented by defining two index values,i.e.,the bound value of learning error and the threshold value of probability.Theory analysis was made for the convergence of operant conditioning learning of operant conditioning with mapping fields of spontaneous contraction,which theoretically proves that the operant action entropy can converge to minimum with the contraction of mapping fields.The result of the simulation experiment in the motion balanced control of two-wheeled robot show that contracting the mapping action fields in this way automatically eliminates unnecessary operant actions and the automaton can learn in the most significant action fields,thereby increasing the learning speed and learning precision.
出处 《电机与控制学报》 EI CSCD 北大核心 2012年第9期83-90,共8页 Electric Machines and Control
基金 中国地震局教师科研基金(20110122) 防灾减灾青年科技基金(201014) 国家自然科学基金(61004012)
关键词 操作条件反射自动机 映射领域 自主收缩移动 操作行为熵 运动平衡控制 operant conditioning automaton mapping fields contract spontaneously operant action entropy motion balanced control
  • 相关文献

参考文献10

  • 1SKINNER B F. The behavior of organisms : An experimental anal- ysis[ M ]. New York : Appleton-Century-Crofts, 1938.
  • 2徐明亮,柴志雷,须文波.移动机器人模糊Q-学习沿墙导航[J].电机与控制学报,2010,14(6):83-88. 被引量:7
  • 3TOURETZK~ D S, TRIRA-THOMPSON E J. Tekkotsu : a Frame- work for AIBO cognitive robotics[ C ]//The National Conference on Artificial Intelligence, July 9- 13, 2005, Pittsburgh, USA. 2005:1741 - 1742.
  • 4VELOSO M M, RYBSKI P E, LENSER S, et al. CMRoboBits: creating an intelligent AIBO robot [ J ]. AI Magazine, 2006, 27 (1) : 67 -82.
  • 5蔡建羡,阮晓钢,郜园园.随机模糊控制策略及其在机器人控制中的应用[J].电机与控制学报,2009,13(5):754-761. 被引量:4
  • 6THATHACHAR M A L, HARITA B R. Learning automata with changing number of actions [ J ]. IEEE Trans. Syst. , Man, Cy- bern, 1987, 17(6) :1095 - 1100.
  • 7NAJIM K, POZNYAK A S. Multimodal searching technique based on learning automata with continuous input and changing number of actions[J]. IEEE Trans. Syst. , Man, Cybem, 1987, 26(4): 666 - 673.
  • 8POZNYAK A S, NAJIM K. Learning automata with continuous in- put and changing number of actions [ J ]. International Journal of Systems Science, 1996, 27 ( 12 ) : 1467 - 1472.
  • 9ZENG X, LIU Z. A learning automata based algorithm for optimi- zation of continuous complex functions [ J ]. Information Science, 2005, 174(3/4) :165 - 175.
  • 10阮晓钢,蔡建羡,戴丽珍.基于概率自动机的操作条件反射计算模型[J].北京工业大学学报,2010,36(8):1025-1030. 被引量:3

二级参考文献39

共引文献11

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部