摘要
为解决在较大加速度运动条件下,固定不变的加速度前馈系数难以提高平面电机加、减速阶段的伺服性能的问题,提出一种基于比例微分控制器输出与目标加速度的自适应前馈系数求解方法。采用最小二乘法,根据运动过程中比例微分控制器输出与目标加速度数据集,对前馈系数进行在线修正。通过引入遗忘因子,使得前馈系数与基于当前位置的动态特性更加匹配。分别采用沿yx、方向的不同加速度轨迹,在最大加速度为20 m/s2时,加、减速段的最大轨迹跟踪误差为0.56μm。该方法完全基于在线运动控制实验,实现了无需电机模型参数的前馈系数求解。
In order to solve the problem that under the motion with a large acceleration,a constant of feedforward coefficient cannot improve the servo performance during acceleration and deceleration,an adaptive feedforward coefficient identification method on the basis of proportional differential(PD) control and the acceleration data was proposed.Using the least square method and according to the output of PD controller and the desired acceleration during motion,the feedforward coefficient was corrected.Introducing the forgetting factor,the feedforward coefficient was more available with the current position depend behavior.y-direction and x-direction trajectory tracking experiments with different acceleration were carried out,and in the case of the maximal acceleration being 20 m/s2,the maximal tracking error during acceleration and deceleration is 0.56 μm.This method is completely based on the online experiment,the calculation of the feedforward is realized without the knowledge of the parameters of the motor
出处
《电机与控制学报》
EI
CSCD
北大核心
2012年第9期95-102,共8页
Electric Machines and Control
基金
国家重点基础研究发展计划项目(973计划)(2009CB724205)
关键词
平面电机
加速度前馈系数
自适应前馈
最小二乘法
轨迹跟踪
遗忘因子
planar motor
acceleration feedforward coefficient
adaptive feedforward
least square method
trajectory tracking
forgetting factor