期刊文献+

基于全局用户意图的评论自动估价方法研究 被引量:5

Automatic Reviews Quality Evaluation Based on Global User Intent
下载PDF
导出
摘要 评论是一种反映事物价值的重要主观信息。该文从用户角度出发,提出一种基于全局用户意图的商品评论自动估价方法。该研究首先定义了一种简易的评论价值划分标准("实用"和"垃圾"评论),借以实现前瞻性的方法尝试。在此基础上,该文采用SVM分类器作为划分评论价值类别(二元分类问题)的基本平台,并基于这一平台重点考察三种影响评论价值的特征:1)属性热度;2)内容可信度;3)用户情感和观点。该文在文本结构特征的基础上,加入上述三类反映用户意图的特征进行评论价值判定,并在大规模商品评论语料集中进行测试。实验表明通过引入用户意图特征,评论自动估价的性能有较大幅度提高。 Reviews reflect the value of things. From the customer's point of view, we propose a novel method for automatically evaluating the quality of product reviews based on the global-user-intent. In this paper, we firstly di- vide the reviews into two opposing groups, i.e. useful reviews and spammed reviews. By means of this definition, we attempt to realize a proactive approach. We experiment with SVM classifier to classify the quality of reviews. This is a typical binary classification and taking extra three kinds of features into consideration: the popular informa- tion of product, reviewers' opinion and review credibility. In this paper, we combine text structure feature with a- bove three kinds of features which reflect the global user intent, and then test on a large-scale corpus of product re- views. The experimental results show a significant improvement on the global accuracy by involving diverse user in- tent features.
出处 《中文信息学报》 CSCD 北大核心 2012年第5期79-87,共9页 Journal of Chinese Information Processing
基金 国家自然科学基金资助项目(60970056 60970057 61003152) 教育部博士学科点专项基金项目(2009321110006 20103201110021) 江苏省苏州市自然科学基金资助项目(SYG201030)
关键词 评论价值 属性抽取 观点挖掘 评论可信度 quality of reviews attribute extraction opinion mining review credibility
  • 相关文献

参考文献10

  • 1Kim S M, Pantel P, Chklovski T, et al. Automatical- ly assessing review helpfulness[C]//Proceedings of the 2006 Conference on Empirical Methods in Natural Lan- guage Processing. 2006: 423-430.
  • 2Ghose A, Ipeirotis P G. Estimating the helpfulness and economic impact of product reviews., mining text and reviewer characteristics[J]. IEEE Transactions on Knowledge and Data Engineering, 2010.
  • 3O~Mahony M P, Smyth B. Using readability tests to predict helpful product reviews [C]//Proceedings of Adaptivity, Personalization and Fusion of Heterogene- ous Information. 2010:164-167.
  • 4Liu J, Cao Y, Lin C Y, et al. Low-quality product re- view detection in opinion summarization[C]//Proceed- ings of the 2007 Joint Conference on Empirical Meth- ods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL). 2007 : 334-342.
  • 5Jindal N, Liu B. Opinion s'pam and analysis[C]//Pro- ceedings of the International Conference on Web Search and Web Data Mining. 2008: 219-230.
  • 6Danescu-Niculescu-Mizil C, Kossinets G, Kleinherg J, et al. How opinions are received by online communi- ties: a case study on amazon, corn helpfulness votes [C]//Proceedings of the 18th International Conference on World Wide Web. 2009: 141-150.
  • 7Lu Y, Tsaparas P, Ntoulas A, et al. Exploiting social context for review quality prediction[C]//Proceedings of the 19th International Conference on World Wide Web. 2010: 691-700.
  • 8Paltoglou G, Thelwall M. A study of information re- trieval weighting schemes for sentiment analysis[C]// Proceedings of the 48th Annual Meeting of the Associ- ation for Computational Linguistics. 2010: 1386-1395.
  • 9DuBay W H. The principles of readability[J]. Impact Information, 2004: 1-76.
  • 10Chang C C, Lin C J. LIBSVM: a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2011, 2(3) : 27.

同被引文献74

  • 1王斌,潘文锋.基于内容的垃圾邮件过滤技术综述[J].中文信息学报,2005,19(5):1-10. 被引量:129
  • 2蒋涛,张彬.Web Spam技术研究综述[J].情报探索,2007(7):66-68. 被引量:3
  • 3巾国互联网信息中心.第32次中国互联网络发展状况统计报告[R/OL].[2013-09-30].http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/201307/t20130717_40664.htm.
  • 4Wang G, Xie S H, Liu B, et al. Review Graph Based Online Store Review Spammer Detection [C]. In: Proceedings of the 11th International Conference on Data Mining. Washington, DC, USA: IEEE Computer Society, 2011 : 1242-1247.
  • 5Li F T, Huang M, Yang Y, et al. Learning to Identify Review Spam [C]. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence. AAAI Press, 2011: 2488-2493.
  • 6Ott M, Choi Y J, Cardie C, et al. Finding Deceptive Opinion Spare by Any Stretch of the Imagination [C]. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA, USA: Association tbr Computational Linguistics, 2011 : 309-319.
  • 7Jindal N, Liu B. Review Spam Detection [C]. In: Proceedings of the 16th International Conference on World Wide Web. New York, NY, USA: ACM, 2007:1189-1190.
  • 8Jindal N, Liu B. Analyzing and Detecting Review Spain [C]. In: Proceedings of the 7th International Conference on Data Mining. Washington, DC, USA: IEEE Computer Society, 2007: 547-552.
  • 9Jindal N, Liu B. Opinion Spam and Analysis[C]. In:Proceedings of the 2008 International Conference on Web Search and Data Mining. New York, NY, USA: ACM, 2008: 219-230.
  • 10Kusumasondjaja S, Shanka T, Marchegiani C. Credibility of Online Reviews and Initial Trust: The Roles of Reviewer's Identity and Review Valence[J]. Journal of Vacation Marketing, 2012, 18(3): 185-195.

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部