期刊文献+

利用改进Fisher分类器进行遥感图像变化检测 被引量:3

Change detection in multitemporal remote sensing images based on local mean dynamic Fisher discriminant analysis
下载PDF
导出
摘要 将多时相遥感图像变化检测问题看成一个分类问题,利用改进的动态Fisher分类器通过二维联合直方图检测变化区域.考虑图像邻域关系,提出基于局部均值的动态Fisher分类器,在引入图像空间关系的同时,根据当前检测结果动态调整训练参数,解决了由于初始训练数据选取不同而造成的不稳定性.该算法不需要假设分布模型,不受差异算子的影响,且将原有的像素级检测提升为上下文相关检测.实验结果表明,该算法提高了检测精度,检测结果稳定。 This paper proposes a novel change detection technique, which treats the detection problem as a classifier problem and uses the improved dynamic Fisher classifier to identify the changes in the joint intensity histogram. By considering the relationship between the pixel and its neighborhood, local mean dynamic Fisher discriminant analysis (LMDFDA) is proposed to introduce the neighborhood' s information. Meanwhile, the parameters of the classifier are adjusted according to the current detection result, which avoids the influences of initial conditions. The proposed method is distribution free, context-sensitive and not affected by comparison operators. Experiments show that the proposed algorithm is effective and feasible for real multi-temporal remote sensing images.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2012年第5期12-17,29,共7页 Journal of Xidian University
基金 国家自然科学基金资助项目(61173092 61072106 60972148 60971128 60970066 61003198 61001206 61077009和61050110144) 高等学校学科创新引智计划(111计划)资助项目(B07048) 教育部'长江学者和创新团队发展计划'资助项目(IRT1170)
关键词 变化检测 非参数估计 动态Fisher分类器 均值漂移 change detection distribution free dynamic Fisher classifier mean shift
  • 相关文献

参考文献10

  • 1SBovolo F, Camps-Vails G, Bruzzone L. A Support Vector Domain Method for Change Detection in Multitemporal Images[J]. Pattern Recognition Letters, 2010, 31(10): 1148-1154.
  • 2Bazi Y, Bruzzone L," Melgani F. An Unsupervised Approach Based on the Generalized Gaussian Model to Automatic Change Detection in Multitemporal SAR Images[J].IEEE Trans on Geosci Remote Sens, 2005, 43(4) : 874-887.
  • 3Bovolo F, Bruzzone L. A Theoretical Framework for Unsupervised Change Detection Based on Change Vector Analysis in Polar Domain[J]. IEEE Trans on Geosci Remote Sens, 2007, 45(3) : 778-789.
  • 4Kita Y. A Study of Change Detection from Satellite Images Using Joint Intensity Histogram[C]//19th International Conference on Digital Object Identifier. Tampa: Pattem Recodnition, 2008: 1-4.
  • 5Sugiyama M. Dimensionality Reduction of Multimodal Labeled Data by Local Fisher Discriminant Analysis[J]. Machine Learning Research, 2007(8): 1027-1061.
  • 6魏莱,王守觉,徐菲菲,王睿智.近邻边界Fisher判别分析[J].电子与信息学报,2009,31(3):509-513. 被引量:6
  • 7辛芳芳,焦李成,王桂婷,万红林.基于小波域Fisher分类器的SAR图像变化检测[J].红外与毫米波学报,2011,30(2):173-178. 被引量:9
  • 8Comaniciu D, Meer P. Mean Shift: A Robust Approach toward Feature Space Analysis[J]. IEEE Trans on Pattern Anal Mach Intell, 2002, 24(5): 603-619.
  • 9王桂婷,王幼亮,焦李成.自适应空间邻域分析和瑞利-高斯分布的多时相遥感影像变化检测[J].遥感学报,2009,13(4):631-646. 被引量:18
  • 10Francesca B, Lorenzo B. A Detail-Preserving Scalse-Driven Approach to Change Detection in Multitemporal SAR Images [J].IEEE Trans on Geosci Remote Sens, 2005, 43(12) : 2963-2972.

二级参考文献32

  • 1罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 2马国锐,李平湘,秦前清.基于融合和广义高斯模型的遥感影像变化检测[J].遥感学报,2006,10(6):847-853. 被引量:32
  • 3Jolliffe I T. Principal Component Analysis[M]. New York:Springer-Verlag, 1986, 10.
  • 4Fukunnaga K. Introduction to Statistical Pattern Recognition[M]. New York: Academic Press, 1991, 20.
  • 5Martinez A M and Kak A C. PCA versus LDA[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2001, 23(2): 228-233.
  • 6Seung H S and Lee D D. The manifold ways of perception[J]. Science, 2000, 290(5500): 2268-2269.
  • 7Tenenbanm J B, De Silva V, and Langford J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2323.
  • 8Roweis S T and Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326.
  • 9Belkin M and Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering[C]. Advances in Neural Information Processing System, Vancouver, British Columbia, Canada, Dec. 3-8, 2001: 585-591.
  • 10He X, Yan S, Hu Y, Niyogi P, and Zhang H. Face recognition using laplacianfaces[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340.

共引文献29

同被引文献16

  • 1王晓晔,王正欧.K-最近邻分类技术的改进算法[J].电子与信息学报,2005,27(3):487-491. 被引量:25
  • 2Wan H L, Iung C, Hou B, et al. Novel Change Detection in SAR Imagery Using Local Connectivity[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1): 174-178.
  • 3Chen K M, Zhou Z X, Huo C L, et al. A Semisupervised Context-Sensitive Change Detection Technique Via Gaussian Process OJ. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2): 236-240.
  • 4Wang F, Wu Y, Zhang Q, et al. Unsupervised Change Detection on SAR Images Using Triplet Markov Field Model OJ. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 697-70l.
  • 5Meyer F G, Coifman R. Brushlet: a Tool for Directional Image Analysis and Image Compression[J]. Applied and Computional Harmonic Analysis, 1997, 4(2): 147-187.
  • 6LiJ M, Zhong H,Jiao L C. SAR Image Segmentation Based on Multiresolution GLCP in Overcomplete Brushlet Domain[CJ IIProceedings of IEEE International Conference on Radar. Piscataway: IEEE, 2006: 1-4.
  • 7Blu T, Luisier F. The SURE-LET Approach to Image Denoising OJ. IEEE Transcations on Image Processing, 2007, 16 (11): 2778-2786.
  • 8Zeng W, Zhou L,Jiang X B, et al. Clustering Based Image Denoising Using SURE-LET[CJI12011 Seventh International Conference on Computational Intelligence and Security. Piscataway: IEEE, 2011: 1303-1307.
  • 9Luisier F, Blu T, Unser M. SURE-LET for Orthonormal Wavelet-Domain Video Denoising OJ. IEEE Transcations on Circuits and Systems for Video Technology, 2010, 20(6): 913-919.
  • 10Clausi D A, Yue B. Comparing Cooccurrence Probabilities and Markov Random Fields for Texture Analysis of SAR Sea Ice Imagery[J]. IEEE Transcations on Geoscience and Remote Sensing, 2004, 42(1): 215-228.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部