期刊文献+

时变复杂动态网络非脆弱同步算法 被引量:3

Non-fragile synchronization algorithm for complex time-varying dynamical networks
下载PDF
导出
摘要 对一类时变复杂动态网络问题,通过引入反馈控制策略来实现非脆弱同步.考虑到网络同步轨迹、拓扑信息等时变不确定因素,假设网络的耦合配置矩阵有界,内部耦合矩阵在范数有界扰动,分别设计加性和乘性非脆弱反馈控制算法,利用Lyapunov方法分析其稳定性,得出实现时变复杂动态网络非脆弱同步的线性矩阵不等式条件,利用此条件求出反馈增益矩阵。 A non-fragile synchronization approach is proposed for a time-varying complex dynamical network via state feedback control. Under the assumptions that uncertainty of the weight matrix of the complex network is bounded and the norm of the perturbation of internal coupled matrix is bounded, the additive and product .non-fragile feedback control algorithms are designed and the sufficient conditions for the synchronization of the complex dynamical network are presented in terms of LMIs, respectively. An example is given to show the effectiveness of the algorithm.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2012年第5期119-125,185,共8页 Journal of Xidian University
基金 国家自然科学基金资助项目(60974139) 中央高校基本科研业务费专项资金资助项目(72103676)
关键词 复杂动态网络 同步算法 非脆弱控制 线性矩阵不等式 李雅普诺夫函数 complex dynamical networks synchronization non-fragile control linear maxtrix inequality Lyapunov function
  • 相关文献

参考文献13

  • 1Zhou T, Bai W, Wang B. et. al. A Brief Review of Complex Networks [J].Control Theory b- Applications, 2005, 34 (1) : 31-36.
  • 2Stilwell D J, Bollt E, Roberson D. Sufficient Conditions for Fast Switching Synchronization in Time-varying Network Topologies [J].SIAM Journal on Applied Dynamical System, 2006, 5(1):140-156.
  • 3Moreau L. Stability of Multiagent Systems with Time-dependent Communication Links[ J]. IEEE Trans on Automatic Control, 2005, 50(2): 169-182.
  • 4Lv J, Chen G R. A Ttime-varying Complex Dynamical Network Model and Its Controlled Synchronization Criteria [J].IEEE Trans on Automatic Control, 2005, 50(6) : 841-846.
  • 5Xiao F, Wang L. Asynchronous Consensus in Continuous-Time Multi-Agent Systems With Switching Topology and Time-Varying Delays[J].IEEE Trans on Automatic Control, 2008, 53(8) : 1804-1816.
  • 6Wang L, Dai H P, Sun Y X. Synchronization Criteria for a Generalized Complex Delayed Dynamical Network Model [J]. Physica A, 2007, 383(2): 703-713.
  • 7Zhou J, Lu J, Lv J. Adaptive Synchronization of an Uncertain Complex Dynamical Network [J].IEEE Trans on Automatic Control, 2006, 51(4): 652-656.
  • 8王磊,戴华平,孙优贤.时变复杂动力学网络的同步控制[J].控制理论与应用,2008,25(4):603-607. 被引量:11
  • 9Guo Zhang,Junmin Li.Non-fragile guaranteed cost control of discrete-time fuzzy bilinear system[J].Journal of Systems Engineering and Electronics,2010,21(4):629-634. 被引量:5
  • 10Kun Ji, Dong Wei. Resilient Control for Wireless Networked Control Systems [J]. International Journal of Control,Automation, and Systems, 2011, 9(2): 285-293.

二级参考文献37

  • 1汪锐,冯佳昕,赵军.一类线性不确定切换系统的非脆弱控制器设计方法[J].控制与决策,2006,21(7):735-738. 被引量:19
  • 2陈国培,李俊民,陈为胜,杨莹.基于混合观测器的混合反馈控制[J].控制理论与应用,2006,23(4):575-580. 被引量:4
  • 3MOHLER R R. Nonlinear Systems: Application to Bilinear control[M]. Engle-wood Cliffs, NJ: Prentice-Hall, 1991, Vol.2.
  • 4MOHLER R R. Bilinear Control Processes[M]. New York: Academic, 1973.
  • 5TAKAGI T, SUGENO M. Fuzzy identification of systems and its applications to modeling and control[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1985, 15(1): 116- 132.
  • 6TANAKA K, SUGENO M. Stability analysis and design of fuzzy control system[J]. Fuzzy Sets and Systems, 1992, 45(2): 135 - 156.
  • 7KIM E, LEE H. New approaches to relaxed quadratic stability condition of fuzzy control systems[J]. IEEE Transactions on Fuzzy Systems, 2000, 8(5): 523 - 533.
  • 8WU H N, LI H X. New approach to deladependent stability analysis and stabilization for fuzzy systems with time- varying delay[J]. IEEE Transactions on Fuzzy Systems, 2007, 15(3) 482 - 493.
  • 9TAO C W, TAUR J S. Robust fuzzy control for a plant with fuzzy linear model[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(1): 30 - 41.
  • 10YI Z, HENG P A. Stability of fuzzy control systems with bounded uncertain delays[J]. IEEE Transactions on Fuzzy Systems, 2002, 10( 1 ): 92 - 97.

共引文献27

同被引文献42

  • 1Strogatz S H.Exploring Complex Networks[J].Nature,2001,410(6825):268-276.
  • 2Newman M E J.The Structure and Function of Complex Networks[J].SIAM Review,2003,45(2):167-256.
  • 3Zhang Qunjiao,Chen Juan,Wan Li.Impulsive Generalized Function Synchronization of Complex Dynamical Networks[J].Physics Letters A,2013,377(39):2754-2760.
  • 4Wu Xiangjun,Lu Hongtao.Hybrid Synchronization of the General Delayed and Non-delayed Complex Dynamical Networks via Pinning Control[J].Neurocomputing,2012,89:168-177.
  • 5Guo Xiaoyong,Li Junmin.A New Synchronization Algorithm for Delayed Complex Dynamical Networks via Adaptive Control Approach[J].Communications in Nonlinear Science and Numerical Simulation,2012,17(11):4395-4403.
  • 6Fan Yongqing,Wang Yinhe,Zhang Yun,et al.The Synchronization of Complex Dynamical Networks with Similar Nodes and Coupling Time-delay[J].Applied Mathematics and Computation,2013,219(12):6719-6728.
  • 7Wu Xiangjun,Lu Hongtao.Projective Lag Synchronization of the General Complex Dynamical Networks with Distinct Nodes[J].Communications in Nonlinear Science and Numerical Simulation,2012,17(11):4417-4429.
  • 8Wang Yangling,Cao Jinde.Cluster Synchronization in Nonlinearly Coupled Delayed Networks of Non-identical Dynamic Systems[J].Nonlinear Analysis:Real World Applications,2013,14(1):842-851.
  • 9Jin Xiaozheng,Yang Guanghong.Adaptive Pinning Synchronization of a Class of Nonlinearly Coupled Complex Networks[J].Communications in Nonlinear Science and Numerical Simulation,2013,18(2):316-326.
  • 10Wang Tengfei,Li Junmin,Tang Shu.Adaptive Synchronization of Nonlinearly Parameterized Complex Dynamical Networks with Unknown Time-Varying Parameters[J].Mathematical Problems in Engineering,2012,2012:592539.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部