期刊文献+

基于无穷小生成元的Burgers方程的边界控制 被引量:3

Infinitesimal generator for boundary control of Burgers equation
原文传递
导出
摘要 该文首先简要介绍了微分方程的不变性条件,以及偏微分方程无穷小生成元的延拓变换,然后分析了如何利用分布参数系统无穷小生成元,求解符合边界条件控制律的过程。对于描述流体流动的Burgers模型,分别讨论了开环和闭环边界控制问题中控制律的选取。设定系统控制目标和初始条件,通过仿真验证选取恰当的控制参数,实现了系统的控制要求,仿真结果说明了控制方法的有效性。该控制方法可以给出解析形式的控制条件,为实现Burgers方程系统的稳定和控制提供了研究基础。 This paper describes the invariance of differential equations and the prolongation transform of the infinitesimal generator for partial differential equations. Then, the infinitesimal generator is used for boundary control of distributed parameter systems. The boundary control of Burgers equation is given for open loop and closed loop conditions. After setting the initial conditions, the control parameter is chosen to meet the control object in simulations. An analytic control condition is given by the control strategy presented in this paper to provide better stabilization and control of Burgers equation.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第9期1171-1175,共5页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金面上项目(20976193) 中国石油大学(北京)科研基金(KYJJ2012-05-31)
关键词 边界控制 BURGERS方程 无穷小生成元 分布参数系统 不变性条件 boundary control Burgers equation infinitesimalgenerator distributed parameter systems invariancecondition
  • 相关文献

参考文献14

  • 1Padhi R, Ali S. An account of chronological developments in control of distributed parameter systems [J]. Annual Reviews in Control, 2009, 33(1) : 59 - 68.
  • 2Palazoglu A parameter Automatica,, Karakas A. Control of nonlinear distributed systems using generalized invariants[J] 2000, 36(5) : 697 - 703.
  • 3Godasi S, Karakas A, Palazoglu A. Control of nonlinear distributed parameter processes using symmetry groups andinvariance conditions [J]. Computers and Chemical Engineering, 2002, 26 ~ 1023 - 1036.
  • 4Chapouly M. Global controllability of nonviscous Burgers type equations [J]. Mathematique, 2007, 344:241 - 246.
  • 5Hinze M, Volkwein S. Analysis of instantaneous control for the Burgers equations [J].Nonlinear Analysis, 2002, 50:1 - 26.
  • 6Yilmaz F, Karasozen B. Solving optimal control problems for the unsteady Burgers equation in COMSOL Multiphysies[J]. Journal of Computational and Applied Mathematics, 2011, 235: 4839-4850.
  • 7Schulze J, Schmid P, Sesterhenn J. Iterative optimization based on an objective functional in frequency-space with application to jet-noise cancellation [J]. Journal of Computational Physics, 2011, 230:6075 - 6098.
  • 8康永刚,张秀娥.基于Burgers模型的岩石非定常蠕变模型[J].岩土力学,2011,32(S1):424-427. 被引量:28
  • 9薛社生,秦承森.Burgers方程初边值条件的控制[J].计算物理,2002,19(3):189-194. 被引量:1
  • 10LIU Weiiiu, Krstifi M, Backstepping boundary control of Burgers' equation with actuator dynamics [J]. Systems & Control Letters, 2000, 41:291 -303.

二级参考文献21

  • 1丁志坤,吕爱钟.岩石粘弹性非定常蠕变方程的参数辨识[J].岩土力学,2004,25(z1):37-40. 被引量:52
  • 2黎剑华,刘优平,汪为巍.软岩非定常蠕变参数辨识[J].南昌工程学院学报,2006,25(1):33-37. 被引量:6
  • 3周家文,徐卫亚,杨圣奇.改进的广义Bingham岩石蠕变模型[J].水利学报,2006,37(7):827-830. 被引量:28
  • 4罗润林,阮怀宁,孙运强,朱昌星.一种非定常参数的岩石蠕变本构模型[J].桂林工学院学报,2007,27(2):200-203. 被引量:22
  • 5[1]Lions J L. Optimal Control of System Governed by Partial Differential Equations[M].Springer, Berlin, 1971,396.
  • 6[2]Ledimet F X, Talagrand O.Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects[J].Tellus, 1986,38:97-10.
  • 7[3]Das S K, Lardner R W. On the estimation of parameters of hydraulic models by assimilation of periodic tidal data [J] .J Geophys Res (Oceans), 1991,96: 15187-15196.
  • 8[4]Yu L, O' Brien J J.Variational estimation of the wind stress drag coefficient and the oceanic viscosity profile [ J]. Phys Oceanogr, 1991,21:709 - 719.
  • 9[5]Lardner R W. Optimal control of open boundary conditions for a numerical tidal model [J].Computer Methods in Appl Mechs & Engineering, 1993,102: 367 - 387.
  • 10[6]David S Utlman, Robert E Wilson. Model parameter estimation from data assimilation modeling: Temporal and spatial variability of the bottom drag coefficient [J]. J Geophys Res, 1998,103(C3): 5531 - 5549.

共引文献27

同被引文献45

  • 1田畴.方程的变换与对称的变换[J].应用数学学报,1989,12(2):238-249. 被引量:2
  • 2Christofides P D. Control oi" nonlinear distributed process systems: Recent developments and challenges [J]. AIChE Journal, 2001, 47(:3): 514 518.
  • 3Padhi R, Ali S F. An account of chronological developments in control o[ distributed parameter systems [J]. Annual Reviews in Control, 2009, 33(1): 59-68.
  • 4Alessandri A, Gaggero M, Zoppoll R. Feedback optimal con trol of distributed Darameter systems by using finite dimen sional approximation schemes[J]. 1EEE Transactions on Neural Networks and l.earning Systems, 2012, 23(6) : 984 -995.
  • 5Smyshlyaev A, Krslic M. Backstepping observers for a class of parabolic Pl)Es[J]. Systems . Control Letters, 2005,54:613 625.
  • 6Smyshlyaev A, Krstic M. Boundary Control of PI)Es: A Course on Backstepping Designs[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2008.
  • 7Krstic M, Srnyshlyaev A, Adaptive boundary conlrol for un- stable parabolic PDEs: Part I Lyapunov design[J]. IEEE Transactions on Automatic Comrol, 2008, 53(7): 1575 1591.
  • 8Smyshlyaev A, Krstic M. Adaptive boundary control for un stable parabolic PDEs: Part II. Estimation based designs [J]. Automatica, 2007, 43(9): 1543-1556.
  • 9Smyshlyaev A, Krstic M. Adaptive boundary control for un stable parabolic PDEs= Part m. Output feedback examples with swapping identifiers[J]. Automatica, 2007, 43 (9) 1557 1554.
  • 10Boskovic D M, Krstic M, Liu Weijiu. Boundary control of an uns*.able heat equation via measurement o{ domain averaged temperature[J]. IEEE Transactions on Automatic Conlrol, 200l, 46(12) : 2022-2028.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部