期刊文献+

基于加速收敛与递阶迭代的多变量系统辨识算法 被引量:2

Identification method based on accelerated convergence and hierarchical iterations for multivariable systems
原文传递
导出
摘要 根据递阶辨识原理和迭代辨识原理,可以实现多变量系统参数的准确辨识,但是其参数的收敛速度有待提高。该文针对参数的收敛性进行研究,提出了基于加速收敛技术的辨识方法。该方法根据递阶辨识原理将多变量系统分解成2个子系统,使其分别含有参数向量和参数矩阵,再根据迭代辨识原理得到参数的迭代解,并应用加速收敛技术进行加速。仿真实验表明:该方法可以得到很好的辨识结果,加速收敛技术的应用显著提高了参数的收敛速度。 The parameters in multivariable systems can be obtained using hierarchical identification and iterative identification, but the convergence rate needs to be improved. This paper presents a faster identification method. According to the hierarchical identification principle, a multivariable system can be decomposed into two subsystems containing a parameter vector and a parameter matrix. Then, iterative solutions are used to accelerate the convergence. Simulations indicate that the algorithm works quite well and the convergence rate is greatly improved.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第9期1194-1198,1204,共6页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(2008AA042131)
关键词 多变量系统 递阶辨识 迭代辨识 参数估计 multivariable systems hierarchical identificationiterative identification parameters estimation
  • 相关文献

参考文献16

  • 1苏成利,徐志成,王树青.PSO算法在非线性系统模型参数估计中的应用[J].信息与控制,2005,34(1):123-125. 被引量:19
  • 2Omranm E T, Salman A. Particle swarm optimization method for image clustering[J]. Int J of Pattern Recognition and Artificial Intelligence, 2005, 19(3) : 297 - 321.
  • 3于颖,李永生,於孝春.粒子群算法在工程优化设计中的应用[J].机械工程学报,2008,44(12):226-231. 被引量:65
  • 4靳其兵,赵振兴,苏晓静,曹丽婷.基于粒子健康度的快速收敛粒子群优化算法[J].化工学报,2011,62(8):2328-2333. 被引量:11
  • 5潘峰,陈杰,甘明刚,蔡涛,涂序彦.粒子群优化算法模型分析[J].自动化学报,2006,32(3):368-377. 被引量:67
  • 6Kohandei M, Sivaloganathan S, Tenti G. Estimation of the quasi-linear viscoelastic parameters using a genetic algorithm [J]. Mathematical and Computer Modelling, 2008, 47(3 - 4) : 266 - 270.
  • 7LI Shaoyuan, CAI Wenjian, MEI Hua, et al. Robust decentralized parameter identification for two-input two-output process from closed-loop step responses [J]. Control Engineering Practice, 2005, 13(4) : 519 - 531.
  • 8MEI Hua, LI Shaoyuan, CAI Weniian, et al. Decentralizedclosed-loop parameter identification for multivariable processes from step responses [J]. Mathematics and computers in Simulation, 2005, 68(2) : 171 - 192.
  • 9Bai E W, Reyland J. Towards identification of Wiener systems with the least amount of a priori information: IIR cases [J]. Automatica, 2009, 45(4) : 956 - 964.
  • 10韩志刚.多层递阶方法理论与应用的进展[J].控制与决策,2001,16(2):129-132. 被引量:21

二级参考文献48

  • 1韩志刚,汤兵勇,陈福厚,C.W.Kenneth Keng.一类具有引导变量的模型的分析[J].控制与决策,1993,8(5):385-388. 被引量:3
  • 2蔡煜东,陈常庆.用遗传算法辨识发酵动力学模型参数[J].化工学报,1995,46(3):338-342. 被引量:14
  • 3于颖,李永生,於孝春,胡毅,陈立苏.波纹管的结构优化设计[J].压力容器,2005,22(12):22-24. 被引量:24
  • 4KENNEDY J, EBERHART R. Particle swarm optimization[C]// IEEE Int'l Conference on Neural Networks. Piscataway, NJ: IEEE Service Center, 1995:1 942-1 948.
  • 5KENNEDY J, EBERHART R. Discrete binary version of the particle swarm algorithm[C]// Proceedings of the IEEE International Conference on Systems, Man. and Cybernetics. Orlando, FL, USA: IEEE, 1997, 5:4 104- 4 108.
  • 6JUAN J. Particle swarm optimization applications in power system engineering[D]. Puerto Rico: University of Puerto Rico, 2004.
  • 7TAYAL M. Particle swarm optimization for mechanical design[D]. Texas: University of Texas, 2003.
  • 8SHI Y, EBERHART R C. Parameter selection in particle swarm optimization [C]// Evolutionary Programming Ⅶ. Lecture Notes in Computer Science. Berlin, 1998, 1 447: 591-600.
  • 9SHIN D K. A penalty approach for nonlinear optimization with discrete design variables[J]. Engineering Optimization, 1990, 16. 29-42.
  • 10SANDGREN E. Nonlinear and discrete programming in mechanical design [C]// Proceeding of the ASME Design Technology Conference. Kissimine, FL: ASME, 1990, 112: 223-229.

共引文献178

同被引文献16

  • 1El-Sherief H. Multivariable system structure and parameter identification using the correlation method[J]. Automatica, 1981, 17(3): 541-544.
  • 2Zheng W X. On a least squares based algorithm for identification of stochastic linear systems[J]. IEEE Trans on Signal Processing, 1998, 46(6): 1631-1638.
  • 3Liu Y J, Sheng J, Ding R F. Convergence of stochastic gradient estimation algorithm for multivariable ARX-like systems[J]. Computers & Mathematics with Applications, 2010, 59(8): 2615-2627.
  • 4Ding F, Chen T. Hierarchical gradient-based identification of multivariable discrete-time systems[J]. Automatica, 2005, 41(2): 315-325.
  • 5Ding F. Coupled-least-squares idnetification for multivariable systems[J]. IET Control Theory and Applications, 2013, 7(1): 68-79.
  • 6Liu Y J, Ding F, Shi Y. A new parameter estimation algorithm for non-uniformly multirate sampled data systems[C]. American Control Conf. San Francisco, 2011: 84-89.
  • 7Ding F, Liu G, Liu X. Partially coupled stochastic gradient identification methods for non-uniformly sampled systems[J]. IEEE Trans on Automatic Control, 2010, 55(8): 1976-1981.
  • 8Goodwin G, Sin K. Adaptive filtering prediction and control[M]. Englewood Cliffs: Prentice-Hall, 1984: 94-98.
  • 9丁锋.系统辨识(8):耦合辨识概念与方法[J].南京信息工程大学学报(自然科学版),2012,4(3):193-212. 被引量:17
  • 10丁锋,汪菲菲.多元系统耦合多新息随机梯度类辨识方法[J].南京信息工程大学学报(自然科学版),2014,6(1):1-16. 被引量:14

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部