期刊文献+

基于终点时刻末端误差的柔性臂迭代学习控制

Iterative learning control based on terminal endpoint tracking error of flexible manipulator
下载PDF
导出
摘要 针对柔性臂重复运行的情况,在仅能测量运行终点时刻末端位置的条件下,提出一种新的结合计算力矩法的迭代学习控制(ILC)方法.该方法利用柔性臂的简化动力学模型,给出各关节控制力矩的参数化表示;并依据终点时刻柔性臂末端位置的误差,通过迭代学习算法调整控制力矩的参数,实现精确到达预期末端位置的目标.算法利用ILC不依赖模型的特点,弥补计算力矩法需要精确模型的缺陷;参数的迭代学习主要起到消除模型误差和各种干扰的作用,增强算法的鲁棒性.通过理论分析给出所提算法的收敛条件.最后在柔性臂系统上进行仿真及实际试验.结果表明,所提出的ILC算法能够克服连杆柔性对柔性臂末端误差的影响,显示良好的控制效果. A new terminal iterative learning control(ILC) was presented for the flexible manipulator whose motion approach combined with computed torque method task was repeatable, in the case of only the elastic link's endpoint pose was measurable. Firstly, the parameterized representation of each joint control torque was derived based on the simplified flexible manipulator dynamics model. Thereafter, in order to drive the flexible manipulator's tip to arrive the desired position, the control torque parameters were adjusted by iterative learning, according to the terminal endpoint tracking error. This approach took advantage of the merit that ILC was independent on model, overcame the heavily relied on model's accuracy. The iterative learning drawback of computed torque approach which of the parameters was mainly used to reduce the effect of the model error and the dfsturbances, at the same time, to enhance the controller's robustness. The convergence condition of the approach was obtained by theoretical analysis. Simulation and experiment for a real flexible manipulator were presented. Results show that the proposed ILC scheme can overcome the impact of the endpoint error caused by link flexibility and has good control effect.
作者 金博 刘山
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第8期1512-1519,共8页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(61273133) 浙江省自然科学基金资助项目(Y1090212)
关键词 迭代学习控制(ILC) 计算力矩法 末端控制 点到点(PTP) 柔性臂 iterative learning control(ILC) computed torque method terminal control point to point(PTP) flexible manipulator
  • 相关文献

参考文献12

  • 1YANG T W, XU W L, HAN J D. Dynamic compensa- tion control of flexible macro-micro manipulator systems[J].IEEE Transactions on Control Systems Technology, 2010, 18(1): 143-151.
  • 2张宇,杨唐文,孙增圻.Neuro-Sliding-Mode Control of Flexible-Link Manipulators Based on Singularly Perturbed Model[J].Tsinghua Science and Technology,2009,14(4):444-451. 被引量:4
  • 3宋轶民,李建新,王世宇,刘建平.Adaptive Control of Flexible Redundant Manipulators Using Neural Networks[J].Transactions of Tianjin University,2006,12(6):429-433. 被引量:2
  • 4DIAZ I M, PEREIRA E, FELIU V. Concurrent design of multimode input shapers and link dynamics for flexi- ble manipulators [J].IEEE/ASME Transactions on Mechatronics, 2010, 15(4) : 646 - 651.
  • 5HILLSLEY K L, YURKOVICH S. Vibration control of a two-link flexible robot arm [C]// Proceedings of the IEEE International Conference on Robotics and Automa- tion. Sacramento: IEEE, 1991, 3: 212-216.
  • 6BHAT S P, MIU D K. Point-to-point positioning of flexible structures using a time domain LQ smoothness constraint[J]. ASME Journal of Dynamics Systems, Measurement and Control, 1992, 114(9): 416-421.
  • 7CRAG J. Introduction to robotics: mechanics and con- trol [M]. Boston: Addison-Wesley, 1986:290-311.
  • 8MEHREZ M W, EI-BADAWY A A. Effect of the joint inertia on selection of under-actuated control algorithm for flexible-link manipulators [J]. Mechanism and Ma- chine Theory, 2010, 45(7) : 967 - 980.
  • 9ORIOLO G, PANZIERI S, ULIVI G. Cyclic learning control of chained-form systems with application to car- like robots [C]// Proceedings of the 13th Triennial World Congress of IFAC. San Francisco: Pergamon, 1996, 1: 187-192.
  • 10XU J X, CHEN Y Q, LEE T H, et al. Terminal itera- tire learning control with an application to RTPCVD thickness control [J]. International Journal of Robust and Nonlinear Control, 2004, 14(8) : 719 - 739.

二级参考文献21

  • 1Oriolo G, Panzieri S, Ulivi G. An iterative learning controller for nonholonomic mobile robots. The International Journal of Robotics Research, 1998, 17(9): 954~970.
  • 2Oriolo G, Panzieri S, Ulivi G. Learning optimal trajectories for non-holonomic systems. International Journal of Control, 2000, 73(10): 980~991.
  • 3Xu Jian-Xin, Chen Yang-Quan, Lee T. Terminal iterative learning control with an application to RTPCVD thickness control. Automatica, 1999, 35(1): 1935~1542.
  • 4Zheng Za-Zhong. Linear System Theory. Beijing: Tsinghua University Press, 2002.
  • 5Tsay S, Lee T. Analysis and optimal control of linear time-varying systems via general orthogonal polynomials.International Journal of Systems Science, 1987, 18(8): 1579~1594.
  • 6Soderstrom T, Stoica P. System Identification. New York: Prentice Hall, 1989.
  • 7Bhat S P, Miu D K. Solutions to point-to-point control problems using Laplace transform technique. ASME Journal of Dynamic Systems, Measurement, and Control, 1991, 113(3): 425~431.
  • 8Arimoto S, Kawamura K, Miyazaki F. Bettering operation of robots by learning. Journal of Robotics Systems,1984, 1(2): 123~140.
  • 9Lucibello P. Point to point polynomial control of linear systems by learning. In: Proceedings of Conference on Decision and Control. Tucson , Arizonsa: 1992. 2531~2532.
  • 10Lucibello P, Panzieri S, Ulivi G. Repositioning control of a two-link flexible arm by learning. Automatica,1997, 33(4): 579~590.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部