期刊文献+

基于运动约束的泛化Field D~*路径规划 被引量:2

Motion constrained generalized Field D path planning
下载PDF
导出
摘要 为了解决基于栅格的路径规划算法因环境描述的离散化导致规划结果不能满足机器人运动约束,以及单一路径代价的局限致使算法无法适用于复杂环境的问题,提出一种基于运动约束的泛化Field D*算法.该算法的代价函数可同时考虑路程、行驶安全以及行驶时间等一个或多个行驶代价.根据机器人运动模型的特性,在路径点提取过程中结合机器人的最小转弯半径,进行满足运动约束的路径平滑.该算法在多组模拟的复杂环境栅格地图中进行测试,实验结果表明,算法对复杂环境有很好的适应性,同时有效提高路径的可执行性. Grid-based path planning method can't meet the motion constraints due to discretization, and its cost function only considers an aspect of navigation costs, which limits it to relative simple environments. To solve these two problems, a motion constrained generalized Field .D algorithm is proposed. In this algorithm, the cost function was designed to involve one or several navigation costs, including distance, safety and time cost. Moreover, according to motion model of robot, the planned path was further smoothed regarding to the constraint of minimum turning radius. A group of simulated grid maps describing complicated environments had been tested. Experiments show that the proposed algorithm not only fits complicated environments but also improves performability of the results.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第8期1546-1552,共7页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金重大资助项目(NSFC 6053407) 国家自然科学基金资助项目(60902077)
关键词 FIELD D* 路径规划 泛化的代价函数 最小转弯半径 Field D path planning generalized cost function minimum turning radius
  • 相关文献

参考文献20

  • 1STENTZ A. Optimal and efficient path planning for partially-known enviroments [C] // Proceedings of the International Conference on Robotics and Automation. San Diego: IEEE,1994: 3310-3317.
  • 2STENTZ A. The Focussed D. algorithm for real-time replanning[C] // Proceedings of the International Joint Conference on Artificial Intelligence. Montreal: [s. n. ], 1995:1652 - 1659.
  • 3KOENIG S, LIKHACHEV M. D" lite [C] // Proceed- ings of the National Conference on Artificial Intelligence. Edmonton:[s. n.], 2002: 476-483.
  • 4LUIS H, OLIVERIA R, LUIZ C. A survey and classifi-cation of A+ based best-first heuristic search algorithms [M]. London: Springer, 2011: 253-262.
  • 5DAVE F, ANTHONY S. Using interpolation to im- prove path planning: The Field D+ algorithm [J]. Field Robot, 2006, 23(2): 79- 101.
  • 6THOMAS C. Fast optimal kinodynamie path planning in dynamic environments [R]. MIT6. 887 Cambrige, MA, USA: MIT Robotics Science g- Systems, 2006.
  • 7LING X, ANTHONY S. Blended local planning for generating safe and feasible paths [C] // Proceedings of International Conference on Intelligent Robots and Sys- tems. Nice: IEEE, 2008: 709-716.
  • 8KAO T H, JING S L, YAU Z C. A comparative study of smooth path planning for a mobile robot by evolution- ary multi-objective optimization [C] // Proceedings of In- ternational Symposium on Computational Intelligence in Robotics and Automation. Jacksonville: IEEE, 2007: 254 - 259.
  • 9LIN H Y, TAUR J S, CHEN W Z. Path-planning u+ sing the behavior cost and the path length with a multi- resolution scheme [C]// Proceedings of IEEE Interna- tional Conference on Systems Man and Cybernetics (SMC). Istanbul: IEEE, 2010:35-42.
  • 10MARIJA S, IVAN P. Integration of Focused D+ and Witkowski's algorithm for path planning and replan- ning [C] // Proceedings of 4th European Conference on Mobile Robots. Mlini/Dubrovnik: Mobile Robots, 2009:99 - 104.

二级参考文献25

共引文献25

同被引文献20

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部