摘要
把讨论的空间由欧氏空间推广到有序拓扑向量空间,在拓扑向量空间里讨论了一类广义(h,φ)-凸性函数及其在最优化理论中的应用.首先定义了(h,φ,η)-K次预不变凸函数,推广了(h,φ)-η预不变凸函数的概念,讨论了它的一些基本性质.然后讨论并得到了关于(h,φ,η)-K次预不变凸函数的一个择一性定理,并根据它得到了抽象空间规划(KMP)的最优性条件及约束品性.
This paper discusses a class of generalized ( h, η) - convexity function and its application to optimization problems in the topological vector space in stead of euclidean space. First we define ( h, φ, η) - K sub - pre - invex function which is generalization of ( h, η) - η pre - invex functions, relative basic properties are discussed. Then a alternative theory on ( h, φ, η) - K pre - invex function is discussed and gotten, with which we get the optimization conditions and a constraint qualification of abstract space called (KMP) -programming.
出处
《商丘师范学院学报》
CAS
2012年第9期20-25,共6页
Journal of Shangqiu Normal University