期刊文献+

基于脉冲同步的混沌系统自适应参数估计

Adaptive Parameter Estimation of Chaotic Systems Based on Impulsive Synchronization
原文传递
导出
摘要 针对一类参数不确定混沌系统,提出了一种基于脉冲同步的自适应参数估计方法,给出了脉冲控制增益和参数自适应律的解析表达式,从理论上证明了该方法可以准确估计出参数不确定混沌系统的所有未知参数.以Lorenz混沌和Ueda振荡器系统为例,数值模拟证明了该方法的有效性. An adaptive parameter estimation method based on impulsive synchronization is proposed for a class of chaotic systems with uncertain parameters. Analytical expressions of the adaptive rules for impulsive controlling gain and parameters are obtained, and it is proved theoretically that the proposed method can accurately estimate all unknown parameters of the chaotic systems with uncertain parameters. The Lorenz system and Ueda oscillator system are taken as examples to illustrate the effectiveness of the proposed method through numerical simulations.
作者 陈胜垚 刘中
出处 《信息与控制》 CSCD 北大核心 2012年第4期472-476,484,共6页 Information and Control
基金 国家自然科学基金资助项目(60971090 61171166 61101193)
关键词 脉冲同步 自适应 参数估计 impulsive synchronization adaptive parameter estimation
  • 相关文献

参考文献20

  • 1Pecora L M, Carroll T L. Synchronization in chaotic systems[J]. Physical Review Letters, 1990, 64(8): 821-824.
  • 2Kocarev L, Parlitz U. General approach for chaotic synchroniza- tion with applications to communication[J]. Physical Review Letters, 1995, 74(25): 5028-5031.
  • 3Peng J H, Ding E J, Ding M, et al. Synchronizing hyperchaos with a scalar transmitted signal[J]. Physical Review Letters, 1996, 76(6): 904-907.
  • 4Jiang G P, Tang W K, Chen G R. A simple global synchroniza- tion criterion for coupled chaotic systems[J]. Chaos, Solitons and Fractals, 2003, 15(5): 925-935.
  • 5Yu Y G, Zhang S C. The synchronization of linearly bidirec- tional coupled chaotic systems[J]. Chaos, Solitons and Fractals, 2004, 22(1): 189-197.
  • 6Ali M K, Fang J. Synchronization of chaos and hyperchaos us- ing linear and nonlinear feedback functions[J]. Physical Review E, 1997, 55(5): 5285-5290.
  • 7Huang D. Simple adaptive-feedback controller for identical chaos synchronization[J]. Physical Review E, 2005, 71(3): 037203.
  • 8Yang T, Chua L O. Impulsive stabilization for control and syn- chronization of chaotic systems: Theory and application to se- cure communication[J]. IEEE Transactions on Circuits and Sys- tems - I: Fundamental Theory and Applications, 1997, 44(10): 976-988.
  • 9Parlitz U, Junge L, Kocarev L. Synchronization-based param- eter estimation from time series[J]. Physical Review E, 1996, 54(6): 6253-6259.
  • 10Sakaguchi H. Parameter evaluation from time sequences us- ing chaos synchronization[J]. Physical Review E, 2002, 65(2): 027201.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部