摘要
单图G的D(β)-点可区VIE-全染色是满足当u,v∈V(G),0<d(u,v)≤β时,有S(u)≠S(v)的正常全染色,这里d(u,v)是任意两点u,v间的距离,S(u)是点u的色集合。D(β)-点可区别VIE-全色数是对图G进行D(β)-点可区别VIE-全染色所需最小色数。文中给出了当β=1,2时广义Mycielski图Mn(C3m)的D(β)-点可区别VIE-全色数。
Let G be a simple graph,A proper total coloring of G is called a D(β)-vertex distinguishing VIE-total coloring if for any two distinct vertices u,v∈V(G),0〈d(u,v)≤β,we have S(u)≠S(v),where d(u,v) denotes the distance between uand v for any u,v∈V(G),S(u)is color set of the vertexu.The D(β)-vertex distinguishing VIE-total chromatic number is the minimum number of colors required for an D(β)-vertex distinguishing VIE-total coloring of G.In this paper,the D(β)-vertex distinguishing VIE-total chromatic number of generalized mycielski graph Mn(C3m) is discussed.
出处
《宜春学院学报》
2012年第8期10-11,80,共3页
Journal of Yichun University
基金
国家自然科学基金资助项目(61163037
61163054)
西北师范大学"知识与科技创新工程"项目(nwnu-kjcxgc-03-61)