期刊文献+

广义Mycielski图的D(β)-点可区别VIE-全染色

D(β)-Vertex Distinguishing VIE-Total Coloring Of Generalized Mycielski Graph M_n(C_m^3)
下载PDF
导出
摘要 单图G的D(β)-点可区VIE-全染色是满足当u,v∈V(G),0<d(u,v)≤β时,有S(u)≠S(v)的正常全染色,这里d(u,v)是任意两点u,v间的距离,S(u)是点u的色集合。D(β)-点可区别VIE-全色数是对图G进行D(β)-点可区别VIE-全染色所需最小色数。文中给出了当β=1,2时广义Mycielski图Mn(C3m)的D(β)-点可区别VIE-全色数。 Let G be a simple graph,A proper total coloring of G is called a D(β)-vertex distinguishing VIE-total coloring if for any two distinct vertices u,v∈V(G),0〈d(u,v)≤β,we have S(u)≠S(v),where d(u,v) denotes the distance between uand v for any u,v∈V(G),S(u)is color set of the vertexu.The D(β)-vertex distinguishing VIE-total chromatic number is the minimum number of colors required for an D(β)-vertex distinguishing VIE-total coloring of G.In this paper,the D(β)-vertex distinguishing VIE-total chromatic number of generalized mycielski graph Mn(C3m) is discussed.
出处 《宜春学院学报》 2012年第8期10-11,80,共3页 Journal of Yichun University
基金 国家自然科学基金资助项目(61163037 61163054) 西北师范大学"知识与科技创新工程"项目(nwnu-kjcxgc-03-61)
关键词 广义MYCIELSKI图 D(β)-点可区别VIE-全染色 D(β)-点可区别VIE-全色数 generalized Mycielski graph; D(β)-vertex distinguishing VIE-total coloring; D(β)-vertex distinguishing VIE-total chromatic number
  • 相关文献

参考文献10

二级参考文献42

  • 1张忠辅,陈祥恩,李敬文,姚兵,吕新忠,王建方.关于图的邻点可区别全染色[J].中国科学(A辑),2004,34(5):574-583. 被引量:192
  • 2任韩,刘彦佩,马登举,卢俊杰.CYCLE SPACES OF GRAPHS ON THE SPHERE AND THE PROJECTIVE PLANE[J].Acta Mathematica Scientia,2005,25(1):41-49. 被引量:1
  • 3张忠辅,王建方,王维凡,王流星.若干平面图的完备色数[J].中国科学(A辑),1993,23(4):363-368. 被引量:16
  • 4张忠辅,李敬文,陈祥恩,程辉,姚兵.图的距离不大于β的任意两点可区别的边染色[J].数学学报(中文版),2006,49(3):703-708. 被引量:96
  • 5Burris A C, Schelp R H, Vertex- distinguishing proper edge - colorings [ J]. J of Graph Theory, 1977, (26) : 73 - 82.
  • 6Bondy J A,Murty U S R. Graph Theory with Applications [ M ]. London, Macmillan Press Ltd, 1976.
  • 7Zhang Zhong - fu, Liu Lin - zhong, Wang Jian - fans Adjacent Strong Edge Coloring of Graphs [J]. Applied Mathematics Letters ,2002,15 ( 5 ) :623 - 626.
  • 8Gmrie, Homak M, Palmer C, et al. General neighbour - distingulshlng index of a graph[ J]. Discrete Mathematics, Special Issue devoted to BBS 2005.
  • 9Tardif C. Fraetional chromatic numbers of cones over graphs [J]. Graph Theory,2001, (38):87 -94.
  • 10ZHANG Zhong-fu,LIU Lin-zhong,WANG Jian-fang. Adjacent strong edge coloring of graphs[J].Appl Math Lett,2002,15(5):623-626.

共引文献155

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部