期刊文献+

Endpoint estimates for n-dimensional Hardy operators and their commutators 被引量:21

Endpoint estimates for n-dimensional Hardy operators and their commutators
原文传递
导出
摘要 In this paper,the sharp bound for the weak-type(1,1) inequality for the n-dimensional Hardy operator is obtained.Moreover,the precise norms of generalized Hardy operators on the type of Campanato spaces are worked out.As applications,the corresponding norms of the Riemann-Liouville integral operator and the n-dimensional Hardy operator are deduced.It is also proved that the n-dimensional Hardy operator maps from the Hardy space into the Lebesgue space.The endpoint estimate for the commutator generated by the Hardy operator and the(central) BMO function is also discussed. In this paper, the sharp bound for the weak-type (1, 1) inequality for the n-dimensional Hardy operator is obtained. Moreover, the precise norms of generalized Hardy operators on the type of Campanato spaces are worked out. As applications, the corresponding norms of the Riemann-Liouville integral operator and the n-dimensional Hardy operator are deduced. It is also proved that the n-dimensional Hardy operator maps from the Hardy space into the Lebesgue space. The endpoint estimate for the commutator generated by the Hardy operator and the (central) BMO function is also discussed.
出处 《Science China Mathematics》 SCIE 2012年第10期1977-1990,共14页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos. 10931001,10901076 and 11171345) Shanghai Leading Academic Discipline Project(Grant No.J50101) supported by the Key Laboratory of Mathematics and Complex System(Beijing Normal University),Ministry of Education,China
关键词 sharp bound generalized Hardy operator COMMUTATOR Campanato space Hardy space Hardy空间 端点估计 运营商 n维 Campanato空间 Lebesgue空间 换向器 Hardy算子
  • 相关文献

参考文献2

二级参考文献13

  • 1Lu Shanzhen and Yang Dachun (Beijing Normal University, China).THE CENTRAL BMO SPACES AND LITTLEWOOD-PALEY OPERATORS[J].Analysis in Theory and Applications,1995,11(3):72-94. 被引量:50
  • 2Rodrigo Ba?uelos,Jean Brossard.The area integral and its density for BMO and VMO functions[J]. Arkiv f?r matematik . 1993 (2)
  • 3Lu,S. Z.,Yang,D. C.The Littlewood-Paley function and φ-transform characterization of a new Hardy space HK2 associated with Herz space. Studia Mathematica . 1992
  • 4Dachun,Yang.The Real-Veriable Characterizations of Hardy SpacesHKp(Rγ), Chinese. Advaices in Math. (China) . 1995
  • 5Chen,Y. Z.,Lau,K. S.On an Equivalent Class of Norms for BMO. J. Austral. Math. Soc. (Series A) . 1989
  • 6Tao,Qian.On BMO Boundedness of a Class of Operators (Chinese). Journal of Mathematical Research and Exposition . 1987
  • 7Silei,Wang.Some Propoerities of Littlewood-Paley’sg-function (Chinese). Sci. Sinica (Ser. A) . 1985
  • 8Chen Y Z,Lau K S.On some new classes of Hardy spaces. Journal of Functional Analysis . 1989
  • 9Garcia-Cuerva J.Hardy spaces and Beurling algebras. Journal of the London Mathematical Society . 1989
  • 10Torchinsky A.The real variable methods in harmonic analysis. Communications on Pure and Applied Mathematics . 1986

共引文献76

同被引文献43

引证文献21

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部