期刊文献+

Infinitely many solutions to elliptic systems with critical exponents and Hardy potentials 被引量:7

Infinitely many solutions to elliptic systems with critical exponents and Hardy potentials
原文传递
导出
摘要 In this paper,a system of elliptic equations is investigated,which involves Hardy potential and multiple critical Sobolev exponents.By a global compactness argument of variational method and a fine analysis on the Palais-Smale sequences created from related approximation problems,the existence of infinitely many solutions to the system is established. In this paper, a system of elliptic equations is investigated, which involves Hardy potential and multiple critical Sobolev exponents. By a global compactness argument of variational method and a fine analysis on the Palais-Smale sequences created from related approximation problems, the existence of infinitely many solutions to the system is established.
出处 《Science China Mathematics》 SCIE 2012年第10期2027-2044,共18页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos.10771219 and 11071092) the PhD Specialized Grant of the Ministry of Education of China(Grant No.20110144110001)
关键词 elliptic system SOLUTION critical exponent Hardy inequality variational method Hardy 椭圆系统 无穷多解 临界指数 指数和 椭圆型方程 逼近问题 变分法
  • 相关文献

参考文献4

二级参考文献80

  • 1LI ShuJuan,PENG ShuangJie.Asymptotic behavior on the Hénon equation with supercritical exponent[J].Science China Mathematics,2009,52(10):2185-2194. 被引量:4
  • 2Jin LingYu,Deng YinBin.A global compact result for a semilinear elliptic problem with Hardy potential and critical nonlinearities on R^N[J].Science China Mathematics,2010,53(2):385-400. 被引量:6
  • 3Shuang-jie Peng.Multiple Boundary Concentrating Solutions to Dirichlet Problem of Hénon Equation[J].Acta Mathematicae Applicatae Sinica,2006,22(1):137-162. 被引量:4
  • 4Angela Pistoia,Enrico Serra.Multi-peak solutions for the Hénon equation with slightly subcritical growth[J]. Mathematische Zeitschrift . 2007 (1)
  • 5Pierpaolo Esposito,Angela Pistoia,Juncheng Wei.Concentrating solutions for the Hénon equation in ?2[J]. Journal d’Analyse Mathématique . 2006 (1)
  • 6Daomin Cao,Shuangjie Peng.Asymptotic behavior for elliptic problems with singular coefficient and nearly critical Sobolev growth[J]. Annali di Matematica Pura ed Applicata . 2006 (2)
  • 7Enrico Serra.Non radial positive solutions for the Hénon equation with critical growth[J]. Calculus of Variations and Partial Differential Equations . 2005 (3)
  • 8Didier Smets,Michel Willem.Partial symmetry and asymptotic behavior for some elliptic variational problems[J]. Calculus of Variations . 2003 (1)
  • 9F. Merle,L. A. Peletier.Asymptotic behaviour of positive solutions of elliptic equations with critical and supercritical growth I. The radial case[J]. Archive for Rational Mechanics and Analysis . 1990 (1)
  • 10Byeon J,Wang Z Q.On the H′enon equation, asymptotic profile of ground states, I. Ann Inst H Poincar′e Anal Non Lin′eaire . 2006

共引文献16

同被引文献9

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部