期刊文献+

On exceptional pq-groups 被引量:1

On exceptional pq-groups
原文传递
导出
摘要 A finite group G is called exceptional if for a Galois extension F/k of number fields with the Galois group G,in the Brauer-Kuroda relation of the Dedekind zeta functions of fields between k and F,the zeta function of F does not appear.In the present paper we describe effectively all exceptional groups of orders divisible by exactly two prime numbers p and q,which have unique subgroups of orders p and q. A finite group G is called exceptional if for a Galois extension F/k of number fields with the Galois group G, in the Brauer-Kuroda relation of the Dedekind zeta functions of fields between k and F, the zeta function of F does not appear. In the present paper we describe effectively all exceptional groups of orders divisible by exactly two prime numbers p and q, which have unique subgroups of orders p and q.
出处 《Science China Mathematics》 SCIE 2012年第10期2081-2093,共13页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant No. 10871106)
关键词 Brauer-Kuroda relation exceptional group pq-group Dedekind Galois扩张 zeta函数 生日 伽罗瓦群 有限群 订单 数域
  • 相关文献

参考文献12

  • 1Bloch S J. Higher Regulators, Algebraic K-Theory, and Zeta Functions of Elliptic Curves. CRM Monograph Series vol. 11. Providence, RI: Amer Math Soc, 2000.
  • 2Brauer R. Beziehungen zwischen Klassenzahlen von Teilk6rpern eines galoisschen K6rpers. Math Nachr, 1951, 4 158-174.
  • 3Browkin J, Brzeziski J, Xu K. On exceptions in Brauer-Kuroda relations. Bull Polish Acad Sci Math, 2011, 59 207 214.
  • 4Brown K S. Cohomology of Groups. New York-Heidelberg-Berlin: Springer-Verlag, 1982.
  • 5Frhlich A. Artin root numbers and normal integral bases for quaternion fields. Invent Math, 1972, 17:143 166.
  • 6Hall M Jr. The Theory of Groups. New York: The Macmillan Company, 1959.
  • 7Hasse H. Uber die Klassenzahl Abelscher ZahlkSrper. Berlin: Akademie-Verlag, 1952.
  • 8Kuroda S. Llber die KIassenzahlen algebraischer Zahlk6rper. Nagoya Math J, 1950, 1:1-10.
  • 9Lichtenbaum S. Values of zeta-functions, 4tale cohomology, and algebraic K-theory. In: Bass H, ed. Algebraic K- Theory, II, "Classical" Algebraic K-Theory and Connections with Arithmetic, Lecture Notes in Math, vol. 342. Berlin-New York: Springer-Verlag, 1973, 489-501.
  • 10Milnor J. Introduction to Algebraic K-Theory. Princeton, N J: Princeton University Press and University of Tokyo Press, 1971.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部