期刊文献+

基于最小支持度阈值动态调整策略的最频繁项集挖掘算法 被引量:1

Mining algorithm for most frequent item-sets based on dynamic adjustment strategy of minimum support threshold
下载PDF
导出
摘要 最频繁项集挖掘是文本关联规则挖掘中研究的重点和难点,它决定了文本关联规则挖掘算法的性能.针对当前在最频繁项集挖掘方面的不足,改进传统的倒排表,并结合最小支持度阈值动态调整策略,提出一个新的基于改进的倒排表和集合理论的最频繁项集挖掘算法.另外,给出几个命题和推论,并把它们用于本文算法以提高性能,最后对所提算法进行实验验证.实验结果表明,该算法的规则有效率和时间性能比常用的两个最频繁项集挖掘算法(NApriori算法,IntvMatrix算法)都好. The mining of most frequent item-sets is the focal and difficult point of text association rules mining, and it directly determines the performance of the mining algorithm for text association rules. Aimed at shortcomings existing in mining algorithm for most frequent item-sets, the traditional inverted list was improved with dynamic adjustment strategy of minimum support threshold and a new mining algo- rithm for most frequent item-sets was presented based on improved inverted list and set theory. In addi- tion, several propositions and deductions were given to improve the performance of the proposed algo- rithm. Finally, the proposed algorithm was verified with experiment. Its result showed that this algorithm exhibited better efficiency of rules and time performance than Napriori and IntvMatrix which are two com- mon mining algorithms for most frequent item-sets.
作者 陈超 刘才铭
出处 《兰州理工大学学报》 CAS 北大核心 2012年第4期85-88,共4页 Journal of Lanzhou University of Technology
基金 国家自然科学基金(61103249) 四川省教育厅科研基金(11ZB095) 人工智能四川省重点实验室开放基金(2011RYY06) 四川理工学院国家培育项目(2011PY05)的资助
关键词 频繁项集 关联规则 倒排表 集合理论 frequent item-sets association rules inverted list set theory
  • 相关文献

参考文献8

二级参考文献60

共引文献27

同被引文献14

  • 1Cao L, Zhao Y, Zhang H, et al. Flexible frameworks for actionable knowledge discovery. IEEE Transactions on Knowledge and Data En- gineering, 2010 ;22 ( 9 ) : 1299-1312.
  • 2Chiu H P, Tang Y T,Hsieh K L. Applying cluster-based fuzzy asso- ciation rules mining framework into EC environment. Apptied Soft Computing, 2012;12 (8) : 2114-2122.
  • 3Fakhrahmad S M, Dastghaibyfard G H. An efficient frequent pattern mining method and its parallelization in transactional databases. Jour- nal of Informa- tion Science and Engineering, 2011 ; 27 ( 2 ) : 511 -525.
  • 4Lan G C, Hong T P, Tseng V S. A projection-based approach for discovering high average-utility itemsets. Journal of Information Sci-ence and Engineering, 2012; 28( 1 ) :193-209.
  • 5Mangalampalli A, Pudi V. Fuzzy association rule mining algorithm for fast and efficient performance on very large datasets. IEEE Interna- tional Conference on Fuzzy Systems, 2009; 25 (4) : 1163-1168.
  • 6Ouyang W, Huang Q. Mining direct and indirect weighted fuzzy as- sociation rules in large transaction databases. International Confer- ence on Fuzzy Systems and Knowledge Discovery, 2009; 24 (2) : 128-132.
  • 7Sim A T H, Indrawan M, Zutshi S, et al. Logic-based pattern dis- covery. IEEE Transactions on Knowledge and Data Engineering, 2010; 22(6) : 798-811.
  • 8Shih B Y, Chang H, Chen C Y. Path planning for autonomous ro- bots-a comprehensive analysis by a greedy algorithm. Journal of Vi- bration and Control, 2012; 32(2) : 171-178.
  • 9Shih B Y, Chert C W, Chen C Y, et al. Merged search algorithms for radio frequency identification anticollision. Mathematical Prob- lems in Engineering, 2012 ; 32( 1 ) : 102-110.
  • 10Soundarrajan A, Sumathi S, Sivamurngan G. Voltage and frequency control in power generating system using hybrid evolutionary algo- rithms. Journal of Vibration and Control, 2012 ; 18 (2) : 214-227.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部