摘要
利用Yau极大值原理,研究常曲率空间中具有常平均曲率的正常2-调和完备子流形,得到该类子流形第二基本形式模长平方的一个间隙性质.
The proper biharmonic complete submanifolds with constant mean curvature in constant-curva- ture space were studied by using Yau maximum principle. A gap property of squared model length of sec- ond fundamental form of this class of submanifolds was obtained.
出处
《兰州理工大学学报》
CAS
北大核心
2012年第4期151-154,共4页
Journal of Lanzhou University of Technology
基金
国家自然科学基金(71061012)
关键词
常曲率空间
正常2-调和子流形
平均曲率
constant-curvature space~ proper biharmonic submanifold
mean curvature