摘要
研究具有迷向S-曲率的Douglas(α,β)-度量F=αφ(β/α),其中α=aij(x)yiyj~(1/2)为黎曼度量,β=bi(x)yi为流形上的1-形式.得到其为具有迷向S-曲率的Douglas度量的充要条件是β关于α是平行的.进一步,完全地分类了局部射影平坦且具有迷向S-曲率的(α,β)-度量.
Douglas (α,β)-metrics F= αφ(β/α) with isotropic S-curvature were studied, where α =√aij (x)yiyj was a Riemannian metric and β=bi (x)yi was a 1-form on the manifold. It was found that the sufficient and necessary condition for Douglas metrics with isotropic S-curvature would be β being parallel with respect to a. Further, locally projectively flat (α,β)-metrics with isotropic S-curvature were classified completely.
出处
《兰州理工大学学报》
CAS
北大核心
2012年第4期155-157,共3页
Journal of Lanzhou University of Technology
基金
贵州省科学技术基金(黔科合体R字[2011]2006号)