期刊文献+

基于贝叶斯分析的中国商业银行内部欺诈分析

The Research on the Internal Fraud of Chinese Commercial BanksBased on the Bayesian Analysis
下载PDF
导出
摘要 内部欺诈事件类型是中国商业银行最严重的操作风险类型。但由于操作风险本质特征和中国商业银行内部欺诈损失数据收集年度较短,数据匮乏,小样本数据容易导致参数结果不稳定。为了在小样本数据下进行更准确的度量,本文采用贝叶斯马尔科夫蒙特卡洛模拟方法,在损失分布法框架下,假设损失频率服从泊松-伽马分布,而损失强度服从广义帕累托-混合伽马分布,分析后验分布的形式,获得中国商业银行不同业务线的内部欺诈损失频率和损失强度的后验分布估计,并进行蒙特卡罗模拟获得不同业务线内部欺诈的风险联合分布。结果表明,拟合结果很好,与传统极值分析法相比,基于利用贝叶斯的分析获得的后验分布可以作为未来的先验分布,有利于在较小样本下获得较真实的参数估计,本方法有助于银行降低监管资本要求。 Internal fraud is the most important loss type of Chinese commercial banks and laas causeu a tot o2 los- ses. Since the nature characteristics of operational risk and the time of data collecting is short, loss data is deftcieney, traditional methods are hard to derive stable parameters estimation with small sample. In order to calcu- late more accurate with little data, this paper uses the Bayesian Markov Chain Monte Carlo simulation to calcu- late the parameters. Under the framework of Loss Distribution Approach, we set the loss frequency Poisson distri- bution, the prior is Gamma distribution, while the loss severity is Generalized Pareto distribution, the prior dis- tribution is mixture Gamma distribution, then we got the posterior distributions of loss frequency and loss severity of internal fraud of different business lines, with Monte Carlo simulation we get the integrated distributions of dif- ferent business lines. The results are good and compared with tradition Extreme Value Theory method, Bayesian analysis is helpful to derive accurate and stable parameters and therefore the total loss with small sample, and using this method the bank can prepare lower operational capital.
出处 《运筹与管理》 CSSCI CSCD 北大核心 2012年第4期200-206,共7页 Operations Research and Management Science
基金 山东省自然科学基金高校 科研单位专项资助项目(ZR2010GL011)
关键词 金融学 操作风险 贝叶斯MCMC分析 内部欺诈 GPD·混合 GAMMA分布 finance operational risk bayesian markov Chain monte carlo method internal fraud GPD-mixturegamma distribution
  • 相关文献

参考文献11

  • 1Cornalba C, Giudici P. Statistical models for operational risk management[ J]. Physica A, 2004, 38: 166-172.
  • 2Nascimento F, Gamerman D, Lopes H F. A semiparametric bayesian approach to extreme value estimation, http://faculty. chieagobooth, edu/hedibert, lopes/research/pdf.
  • 3Pandey H, Rao A K. Bayesian estimation of the shape parameter of a generalized pareto distribution under asymmetric func- tions[ J]. Mathematics and Statistics, 2009, 38 ( 1 ) : 69-83.
  • 4Diebolt J, El-aroui M, Garrido M, Girard S. Quasi-conjugate Bayes estimates for GPD parameters and application to heavy tails modeling[J]. Extremes, 2005, 8: 57-78.
  • 5Dalla Valle L, Giudici P. A bayesian approach to estimate the marginal loss distribution in operational risk management[ J]. Computational Statistics & Data Analysis, 2008, 52 : 3107-3127.
  • 6Bermudez P de Zea, Amaral Turkman A. Bayesian approach to parameter estimation of the generalized pareto distribution[ J]. Sociedad de estadistica e investigacion operative test, 2003, 12( 1 ) : 259-277.
  • 7Pang W, Hou S, Marvin D T, Yu W, Li K W K. A markov Chain monte carlo approach to estimate the risks of extremely large insurance claims[ J]. International Journal of Business and Economics, 2007, 6 (3) : 225-236.
  • 8樊欣,杨晓光.我国银行业操作风险的蒙特卡罗模拟估计[J].系统工程理论与实践,2005,25(5):12-19. 被引量:49
  • 9高丽君,李建平,徐伟宣,王书平.基于POT方法的商业银行操作风险极端值估计[J].运筹与管理,2007,16(1):112-117. 被引量:29
  • 10卢安文,任玉珑,唐浩阳.基于贝叶斯推断的操作风险度量模型研究[J].系统工程学报,2009,24(3):286-292. 被引量:19

二级参考文献55

共引文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部