期刊文献+

航空复杂产品项目活动时间混合分布估算模型的改进 被引量:2

Improved Mixture Densities for the Activity Time Estimation in Aviation Complex Product Project
下载PDF
导出
摘要 航空复杂产品开发项目具有复杂性、随机性、多目标性的特点,并且产品本身小批量、多品种的生产模式使得无法大量积累历史数据。因此,航空复杂产品项目活动时间存在高度的不确定性。如何能够更加合理、准确的描述其项目活动时间,对优化航空复杂产品的研制过程、缩短研制周期以及降低研制成本具有重大的意义。本文在Hahn基于PERT所建立的Beta Rectangular混合分布模型的基础上,保留其期望值的表达式,对其方差表达式进行改进。按照Malcolm、José等人的思想,将最可能值m与Beta分布的众数相对应,并且考虑其对方差的影响。仅保留PERT的一个假设,使方差的推导更多地依照于Beta分布而不是较多的近似。仿真结果表明,改进后的混合分布模型不但更具柔性,而且可以更加科学准确地描述航空复杂产品调度中高度不确定的任务持续时间状况。 The aviation complex product project is usually characterized as complex, stochastic and multi-objective work, and in addition, the small output and variety production model makes it impossible to cumulate nu- merous statistical data. So, the activity time of aviation complex product project is highly uncertain. How to accurately and precisely estimate the activity time is significant to optimizing process, shortening periods and cutting cost in the aviation complex product project. This paper prefers the expectation to variance of Hahn' s Beta Rectangular mixture densities based on PERT. We improve his variance formula by, as was suggesfed by Mal- colm and Jos6 et al, aligning the most likely value m with the mode of Beta distribution as well as considering how the value m affects the variance. Since only one of the PERT assumptions is necessarily retained and the e- licitation of the variance is more straightforward from the Beta density rather than under more assumptions, the improved mixture model is not only more flexible in application but also more accurate to address the problem of highly uncertain task duration in the aviation complex product project. The results under data simulation have proved this.
作者 王涛 蔡建峰
出处 《运筹与管理》 CSSCI CSCD 北大核心 2012年第4期214-219,共6页 Operations Research and Management Science
基金 航空科学基金资助项目(2010ZG53074) 国家社会科学基金资助项目(10BGL022)
关键词 运作管理 PERT 混合分布 不确定性 任务持续时间 航空复杂产品 operation research PERT mixture densities uncertainty task duration aviation complex product
  • 相关文献

参考文献26

  • 1Hobday M, Brady T. Rational V S. Soft management in complex software: lessons from flight simulation[ J]. International Journal of Innovation Management, 1998, 2 (1) : 1-43.
  • 2羌磊,肖田元.分布协同Bayesian优化方法求解调度问题[J].清华大学学报(自然科学版),2005,45(10):1328-1331. 被引量:2
  • 3Malcolm D G, Roseboom J H, Clark C E, et al.. Application of technique for research and development program evaluation (PERT) [J]. Operations Research, 1959, 7(5) : 646-669.
  • 4William T M. Criticality in stochastic networks[J]. Operational Research Society Journal, 1992, 43: 353-357.
  • 5Kamburowski J. An overview of the computational complexity of the PERT shortest route and maximum flow problems in sto- chastic networks[ A ]. Andreatta G, Mason F, and Serafini P. Stochastic in Combinatorial Optimization [ C ]. Singapore: World Scientific Publishing, 1987. 187-196.
  • 6MacCrimmon K R, Ryavec C A. An analytical study of the PERT assumptions [ J]. Operations Research, 1964, 12( 1 ) : 16-37.
  • 7Perry C, Greig I D. Estimating the mean and variance of subjective distributions in PERT and decision analysis[ J]. Manage- ment Science, 1975, 21(12): 1477-1480.
  • 8Kotiah T, Wallace N. Another look at the PERT assumptions[ J]. Management Science, 1973, 20 (1) : 44-49.
  • 9Abdelkader Y H. Evaluating project completion times when activity times are weibull distributed [ J]. European Journal of Operational Research, 2004, 157 (3) : 704-715.
  • 10Kulkarni V G, Adlakha V G. Markov and markov-regenerative PERT networks [ J]. Operations Research, 1986, 34 (5) : 769-781.

二级参考文献11

  • 1Martin P, David E G, Erick C P. BOA: The Bayesian optimization algorithm [A]. Proceedings of the Genetic and Evolutionary Computation Conference GECCO-99 [C].Orlando, Florida: Morgan Kaufmann, 1999.
  • 2Zlochin M, Birattari M. Model-based Search for Combinatorial Optimization [R]. IRIDIA/2001-15,Belgium: Universite Libre de Bruxelles, 2001.
  • 3Oèenásek J, Schwarz J. Estimation of Distribution Algorithm for mixed continuous-discrete optimization problems [A]. 2nd Euro-International Symposium onComputational Intelligence [C]. Kosice, Slovakia: IOS Press, 2002. 227 - 232.
  • 4Schwarz J. Evolutionary multi-objective Bayesian optimization algorithm : Experimental study [A].Proceedings of the 35th Spring International Conference MOSIS'01 [C]. CZ, MARQ: Hradec nad Moravici, 2001.101 - 108.
  • 5Paul T K, Iba Hitoshi. Linear and combinatorial optimizations by estimation of distribution algorithms [A].9th MPS symposium on Evolutionary Computation [C].Japan: IPSJ, 2002.
  • 6Suzuki J. Learning Bayesian belief networks based on the MDL Principle: An efficient algorithm using the branch and bound technique [J]. IEICE Transactions on Information and Systems, 1999, E82-D(2): 356 - 367.
  • 7Watkins C. Q-learning [J]. Machine Learning, 1992,8(3- 4): 279- 292.
  • 8邓聚龙.灰色系统[M].北京:国防工业出版社,1985..
  • 9杨冰,谢成辉.复杂网络计划时间参数计算[J].计算机辅助工程,2001,10(2):19-24. 被引量:7
  • 10潘捷,董章震,邓家禔.工作流活动网络图主关键路径的确定[J].计算机与数字工程,2002,30(6):26-31. 被引量:7

共引文献2

同被引文献22

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部