期刊文献+

基于最小均方误差的时延估计方法研究 被引量:1

Research on the Time Delay Estimation Method Based on the Least Mean Square Error
原文传递
导出
摘要 文章对最小均方误差时延估计方法做了详细的讨论,研究经典LMSTDE算法和约束类ETDE算法和ETDGE算法的原理,并从非相关背景噪声和相关背景噪声两方面入手,来分析静态时延下的估计性能。在非相关背景噪声下LMSTDE算法、ETDE算法和ETDGE算法均有着良好的估计性能;在相关背景噪声下,传统LMSTDE算法不能准确估计时延,而ETDE算法和ETDGE算法依然具有时延估计的能力。 This paper discusses "Least Mean Square Error TDE Method" in detail, studies the theories of classical algorithm, LMSTDE, and two constrained algorithms, ETDE and ETDGE. The paper also analyzes the static delay capability of the three algorithms in two aspects which are uncorrelated background noise and correlated background noise. In the uncorrelated background noise, the algorithms of LMSTDE, ETDE and ETDGE all have good property in estimating delay. And in correlated background noise, the traditional LMSTDE algorithm can not estimate time delay exactly, while ETDE and ETDGE algorithms can still estimate delay accurately.
作者 班伟杰 裴红
出处 《电子技术(上海)》 2012年第9期1-2,6,共3页 Electronic Technology
关键词 时延估计 LMSTDE算法 ETDE算法 ETDGE算法 time delay estimation LMSTDE algorithm ETDE algorithm ETDGE algorithm.
  • 相关文献

参考文献5

二级参考文献42

  • 1AIAZZI B, ALPARONE L, BARONTI S. Estimation based on entropy matching for generalized Gaussian PDF modeling [J]. IEEE Signal Process. Letters, 1999, 6 (6): 138-140.
  • 2DO M N, VETTERLI M. Wavelet-based texture retrieval using generalized Gaussian density and KullLback-Leibler distance [J]. IEEE Trans. Image Process, 2002, 11 (2): 146-158.
  • 3BAZI Y, BRUZZONE L, MELGANI E Image thresholding based on the EM algorithm and the generalized Gaussian distribution[J]. Pattern Recognition, 2007, 40(2): 619-634.
  • 4SONG K S. A globally convergent and consistent method for estimating the shape parameter of a generalized Gaussian distribution [J]. IEEE Trans. Information Theory, 2006, 52(2): 510-527.
  • 5KRUPINSKI R, PURCZYNSKI J. Approximated fast estimator for the shape parameter of generalized Gaussian distribution [J]. Signal Processing, 2006, 86: 205- 211.
  • 6SHU K S, LIN Y, WU C C. Image thresholding using a novel estimation method in generalized Gaussian distribution mixture modeling[J]. Neurocomputing, 2008, 72(1-3): 500-512.
  • 7MINGHONG P. Improve maximum likelihood estimation for subband GGD parameters [J]. Pattern Recognition Letters, 2006, 27: 1710-1713.
  • 8GAO SH SH, FENG ZH H, ZHONG Y M, et al. Random weighting estimation of parameters in eneralized Gaussian distribution [J]. Information Sciences, 2008, 78 2275-2281.
  • 9KOMAREK A, LESAFFRE E. Generalized linear mixed model with a penalized Gaussian mixture as a random effects distribution[J]. Computational Statistics & Data Analysis, 2008, 52(7): 3441-3458.
  • 10DONG Y Q, XU S F. A new directional weighted median filter for removal of random-valued impulse noise[J]. IEEE Signal Processing Letters, 2007, 14(3): 1070-9908.

共引文献25

同被引文献10

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部