期刊文献+

一种基于模糊聚类和蕴涵度的模糊关联规则挖掘算法

An Algorithm of Fuzzy Association Rules Mining Based on Fuzzy Clustering and Implication Degree
原文传递
导出
摘要 对于模糊关联规则挖掘算法存在的不足,首先为了软化数量型属性论域的划分边界,借用了FCM算法将数量型属性离散化,并把数据集划分成若干个模糊集等级;然后,对模糊置信度进行定义时,把经典关联规则中的置信度的定义经过扩展后直接运用到模糊集上,不免会带来一些逻辑推理上的问题,采取了蕴涵度代替模糊置信度的方法,引入模糊蕴涵算子,经过进一步推理论证,证明了蕴涵度能够用模糊支持度来代替。提出了一种基于模糊聚类和蕴涵度的模糊关联规则挖掘算法,并通过实验证明了算法的有效性。 Aiming at the deficiency of the algorithm of fuzzy association rules mining, in order to soften the domain partition boundary of the quantitative attributes, the quantitative attributes are partitioned into several fuzzy sets by fuzzy C-means algorithm; then, the extended definition of confidence degree in classical association rule is directly used in fuzzy sets when defining fuzzy confidence degree, some problems of logical reasoning may occur, so the method of implication degree is used instead of fuzzy confidence degree, and fuzzy implication operator is introduced. Through further inference and proof, it is shown that implication degree can be replaced with fuzzy support degree. An algorithm of fuzzy association rules mining based on fuzzy clustering and implication degree is proposed, and an experiment shows that the algorithm is effective.
出处 《电子技术(上海)》 2012年第9期3-6,共4页 Electronic Technology
基金 湖南省教育厅科研项目资助(10C0756) 湖南省自然科学基金项目资助(11JJ5038) 湖南省自然科学基金项目资助(09JJ6100)
关键词 数据挖掘 模糊关联规则 FCM 蕴涵度 data mining fuzzy association rules fuzzy c-means implication degree
  • 相关文献

参考文献6

  • 1Agrawal R, Imielinski T, Swami A. Database mining:a performance perspective[J].IEEE Transactions onKnowledge and Data Engineering,1993,5(6):914-925.
  • 2Hullermeier E, Dubois D, Prade H A. Note on qualitymeasures for fuzzy association rules[C] //ProceedingsIFSA-03, 10th International Fuzzy Systems AssociationWorld Congress. Istambul,2003:677-648.
  • 3吕晓华,贾宇波,孙麒.一种基于多层模糊模式的频繁项集剪枝算法的优化[J].浙江理工大学学报(自然科学版),2006,23(1):50-55. 被引量:3
  • 4Zadeh L A. Fuzzy Sets. Information and Control.1965,8: 33-35.
  • 5Chen G Q, Yan P, Kerre E E. Mining fuzzy implication-based association rules in quantitative Databases [C] //Proceedings of FLINS2002,Belgium,2002: 56-67.
  • 6Chen G Q, Wei Q. Fuzzy association rules and theextended algorithms[J].Information Sciences,2002,147(1-4): 201-228.

二级参考文献7

  • 1[1]Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large dababases [C]//Proceedings of the ACMSIGMOD International Conference Management of Data.Wasington,1993:207 -216.
  • 2[2]Cheung David W,Han Jiawei,Vincent T Ng,et al.A fast distributed algorithm for mining association rules[C]//Proc of Int' l Conf Parallel and Distributed Information System.Horida,1996:31 -44.
  • 3[3]Park J S,Chen M S,Yu P S.An effective hash-based algorithm for mining association rules[C]//Proc.1995 ACM-SIGMOD Int,Comf Management of Data.San Jose,CA,May 1995:175 - 186.
  • 4[4]Han J,Fu Y.Discovery of multiple-level association rules from large databases[C]//Proc of the 21st Int' l Conf on VLDB,Zurich,1995:420 - 431.
  • 5[6]Chen Guo-qing.Fuzzy logic in data modeling:semantics,constraints and database design[M].Boston:Kluwer Academic Publishers,1998:79 - 92.
  • 6王春花,黄厚宽,李红莲.一种快速有效的分布式开采多层关联规则的算法[J].计算机研究与发展,2001,38(4):438-443. 被引量:6
  • 7张保稳,何华灿.有效支持度和模糊关联规则挖掘[J].小型微型计算机系统,2002,23(9):1104-1106. 被引量:3

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部