期刊文献+

N,N'-二[(2,2,2-三硝基乙基-N-硝基)]乙二胺的热安全性和密度泛函理论研究(英文) 被引量:4

The Thermal Safety and a Density Functional Theoretical Study on N,N′-Bis[N-(2,2,2-Trinitroethyl)-N-Nitro]Ethylenediamine(BTNEDA)
下载PDF
导出
摘要 借助N,N'-二[(2,2,2-三硝基乙基-N-硝基)]乙二胺的恒容标准燃烧热(Qc),不同加热速率(β)非等温DSC曲线离开基线的初始温度(T0)、onest温度(Te)、最大峰顶温度,由Kissinger法和Ozawa法所得的热分解反应活化能(EK,EO)和指前因子(AK),从方程lnβi=ln[A0/be0(orp0)G(α)]+be0(orp0)Te(orp)i所得的值be0(orp0),从方程lnβi=ln[A0/(ae0(orp0)+1)G(α)]+(ae0(orp0)+1)lnTe(orp)i所得的ae0(orp0)值,从方程ln(βi/(Tei-T0i))=ln (A0/G(α))+bTei所得的b值,从方程ln(βi/(Tei-T0i))=ln (A0/G(α))+alnTei所得的a值,估算的比热容(cp)、密度(ρ)、热导率(λ)和分解热(Qd,取爆热之半)数据,Zhang-Hu-Xie-Li公式,Hu-Yang-Liang-Xie公式,基于Berthelot方程和Harcourt-Esson方程计算热爆炸临界温度的公式,Smith方程,Friedman公式,Bruckman-Guillet公式,热力学公式和Wang-Du公式,计算了由理想燃烧反应和Hess定律得到的BTNEDA的恒容标准燃烧能ΔcU(BTNEDA,s,298.15K)和标准生成焓ΔfHmθ(BTNEDA,s,298.15K),β→0时的T0、Te和Tp值(T00,Te0和Tp0),热爆炸临界温度(Tbe0和Tbp0),绝热至爆时间(tTIad),撞击感度50%落高(H50),热点起爆临界温度(Tcr),被350K环境包围的半厚和半径为1m的无限大平板、无限长圆柱和球形BTNEDA的热感度概率密度函数,相应于S(T)与T关系曲线最大值的峰温(TS(T)max),安全度(SD),临界热爆炸环境温度(Tacr)和热爆炸概率(PTE)。得到了评价BTNEDA热安全性的下列结果:(1)ΔcU(BTNEDA,s,298.15K)=-(3478.11±6.41)kJ.mol-1和ΔfHmθ(BTNEDA,s,298.15K)=-(53.546.41)kJ.mol-1;(2)T00=438.73K,TSADT=Te0=440.73K,Tp0=446.53K;Tbe0=449.88K,Tbp0=455.28K;(3)当EK=199.5kJ·mol-1,AK=1020.45s-1,cp=1.12J·g-1.K-1,Qd=3226J·g-1,T0=Te0=440.73K,T=Tb=455.26K,f(α)=3(1-α)2/3,a=10-3cm,ρ=1.87g·cm-3,t-t0=10-4s,Troom=293.15K和λ=0.00269J·cm-·1s-·1K-1,H50=15.03cm,tTIad=1.25s,Tcr,hot,spot=333.86K;对无限大平板,TS(T)max=350K,Tacr=345.47K,SD=28.55%,PTE=71.45%;对无限长圆柱,TS(T)max=354.5K,Tacr=349.73K,SD=39.31%,PTE=60.69%;对球,TS(T)max=357.00K,Tacr=352.42K,SD=45.81%,PTE=54.19%。运用密度泛函理论计算获得了BT-NEDA的优化构型及红外光谱,分析了其分子总能量、前沿轨道能量和原子净电荷分布。 With the help of the constant-vlume standard combustion heat(Qc)ofN,N′-bis[N-(2,2,2-trinitroethyl)-N-nitro]ethylenediamine(BTNEDA), the initial temperature(T0),at which DSC curves deviates from the baseline,the on set temperature(Te)and maximum peak temperature(Tρ)from the non-isothermal DSC curves at different heatin grates(β),the thermal decomposition activation energy(Eκ andEO)and pre-exponential-constant -(Aκ) obtained by Kissinger′s method and Ozawa′s method,the value of be0(orp0) from equation Inβi=In[A0/be0(orp0)G(α)]+be0(orp0)Te(orp)i and the value of ae0(orp0) from equation Inβi=In[A0/(ae0(orp0) +1)G(α)]+(ae0(orp0) +1)InTe(orp)i,the value of b from equation In( βi/ ( Tei-T ) 0i) = In( A0/ ( G(α ) )+b Tei,the value of a from equation In (βi/ ( Tei-T0i )) =In (A0/ G(α ) ) +aInTei,the estimated values of specific heat capacity(cρ),density(ρ) and thermal conductivity(λ),the decomposition heat(Qd,taking half-explosion heat),Zhang-Hu-Xie-Li formula,Hu-Yang-Liang-Xie formula, formulae of calculating the critical temperature of thermal explosion based on Berthelot′s equation and Harcourt-Esson′s equation,Smith′s equation, Friedman′s formula,Bruckman-Guillet formula,thermodynamic formulae and Wang -Du formulas,the constant-volume standard combustion energy ΔcU(BTNEDA,s,298.15K) and standard enthalpy of formation ΔfHθm(BTNEDA,s,298.15K) obtained by ideal combustion reaction and Hess′s law,the values (T00,Te0andTρ0)ofT0,Te and Tρ corresponding to β→0,critical temperature of thermal explosion(Tbe0andTbp0),adiabatic time-to- explosion (tTIad),50% drop height(H50)of impact sensitivity,critical temperature of hot-spot initiation(Tcr),thermal sensitivity probability density function S(T)for infinite platelike,infinite cylindrical and spheroidic BTNEDA with half thickness and radius of 1 m surrounded with surrounding of 350K, peak temperature corresponding to the maximum value ofS(T)vs Trelation curve(TS(T)max),safety degree(SD),criticalthermalexplosionambienttemperature(Tacr)andthermalexplosionprobability(PTE)ofBTNEDA were calculated.The following results of evaluating the thermal safety of BTNEDA were obtained:(1)ΔcU(BTNEDA,s,298.15K) =-(3478.11±6.41)kJ·mol-1andΔfHθm(BTNEDA,s,298.15K) =-(53.54±6.41)kJ·mol-1;(2) T00 =438.73K,TSADT =Te0 =440.73K,Tp0 =446.53K;Tbe0 =449.88K,Tbp0 =455.28K;(3)whenEκ =199.5kJ·mol-1,Aκ =1020.45 s-1, cp =1.12J·g-1·K-1,Qd =3226J· g-1,T0 =Te0 =440.73K,T=Tb =455.26K,f(α)=3(1-α)2/3,a=10-3 cm,ρ=1.87g· cm-3, t-t0=10-4 s,Troom =293.15Kandλ=0.00269J·cm-1·s-1·K-1,H50 =15.03cm,tTIad =1.25s,Tcr,hot,spot=333.86K,for infinite plate, TS(T)max=350K,Tacr=345.47K,SD=28.55%,PTE=71.45%,for infinite cylinder,TS(T)max =354.5K,Tacr=349.73K,SD=39.31%,PTE = 60.69%,forsphere,TS(T)max=357.00K,Tacr=352.42K,SD=45.81%,PTE=54.19%.The conjunction of BTNEDA was optimized with density functional theory(DFT)B3LYP.The atomic charges,total energy and frontier orbital energy were also discussed.
出处 《含能材料》 EI CAS CSCD 北大核心 2012年第5期505-505,506-513,共9页 Chinese Journal of Energetic Materials
基金 National Natural Science Foundation of China (No 21073141 No21173163)
关键词 物理化学 BTNEDA 热分解 热安全性 自加速分解温度 热爆炸临界温度 绝热至爆时间 撞击感度50%落高 由撞击引起的热点起爆临界温度 安全度 临界热爆炸环境温度 热爆炸概率 量子化学计算 physical chemistry N, N'-bis[ N-(2,2,2-trinitroethyl)-N-nitro] ethylenediamine (BTNEDA) thermal decomposition thermal safety self-accelerating decomposition temperature critical temperature of thermal explosion adiabatic time-to-explosion impact sensitivity criticaltemperature of hot-spot initiation safety degree critical thermal explosion ambient temperature thermal explosion probability the quantumchemical calculation
  • 相关文献

参考文献9

二级参考文献49

共引文献49

同被引文献17

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部